首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PLEKHG2 is a Dbl family Rho guanine nucleotide exchange factor (RhoGEF) whose gene was originally identified as being upregulated in a leukemia mouse model and was later shown to be activated by heterotrimeric G protein βγ (Gβγ) subunits. However, its function and activation mechanisms remain elusive. Here we show that, compared to its expression in primary human T cells, its expression is upregulated in several leukemia cell lines, including Jurkat T cells. Downregulation of PLEKHG2 in Jurkat T cells by small interfering RNAs (siRNAs) specifically inhibited Gβγ-stimulated Rac and Cdc42, but not RhoA, activation. Consequently, suppressing PLEKHG2 expression blocked actin polymerization and SDF1α-stimulated lymphocyte migration. Additional studies indicate that Gβγ likely activates PLEKHG2, in part by binding the N terminus of PLEKHG2 to release an autoinhibition imposed by its C terminus, which interacts with a region encompassing the catalytic Dbl homology (DH) domain. As a result, overexpressing either the N terminus or the C terminus of PLEKHG2 blocked Gβγ-stimulated Rac and Cdc42 activation and prevented Jurkat T cells from forming membrane protrusions and migrating. Together, our studies have provided the first evidence for the endogenous function of PLEKHG2, which may serve as a key Gβγ-stimulated RhoGEF that regulates lymphocyte chemotaxis via Rac and Cdc42 activation and actin polymerization.  相似文献   

2.
3.
4.
The central role of phosphatidylinositol 3-kinase (PI3K, p110α) signaling in allowing cancer cells to bypass normal growth-limiting controls has led to the development of PI3K(p110α) inhibitors. A challenge in targeting PI3K(p110α) relates to the diverse actions of the PI3K pathway in numerous cell types. Recent findings in mice deficient in PI3K(p110α) activity in the heart, demonstrate the critical role of this pathway in protecting the heart against pathological insults. Mice deficient in PI3K(p110α) displayed accelerated heart failure in response to dilated or hypertrophic cardiomyopathy. These results help explain the association of cardiomyopathy in cancer patients given tyrosine kinase inhibitors and raise concerns for the use of PI3K(p110α) inhibitors in cancer patients with cardiovascular risk factors. Interestingly, an inhibitor of the mammalian target of rapamycin (a downstream effector of PI3K), did not have adverse effects on the heart. A more complete understanding of the complex arms and interactions of the PI3K pathway will hopefully lead to the development of anti-cancer agents without cardiac complications.  相似文献   

5.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is frequently upregulated in cancer. PIK3CA, the gene coding for the catalytic subunit p110α of PI3K, is mutated in about 12% of all human cancers. Most of these mutants are single amino acid substitutions that map to three positions (hot spots) in the helical or kinase domains of the enzyme. The mutant proteins show gain of enzymatic function, constitutively activate AKT signaling and induce oncogenic transformation in vitro and in animal model systems. We have shown previously that hot-spot mutations in the helical domain and kinase domain of the avian p110α have different requirements for interaction with the regulatory subunit p85 and with RAS-GTP. Here, we have carried out a genetic and biochemical analysis of these "hot-spot" mutations in human p110α. The present studies add support to the proposal that helical and kinase domain mutations in p110α trigger a gain of function by different molecular mechanisms. The gain of function induced by helical domain mutations requires interaction with RAS-GTP. In contrast, the kinase domain mutation is active in the absence of RAS-GTP binding, but depends on the interaction with p85.  相似文献   

6.
The PI3K (phosphoinositide 3-kinase) pathway is commonly activated in cancer as a consequence of inactivation of the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10), a major negative regulator of PI3K signalling. In line with this important role of PTEN, mice that are heterozygous for a PTEN-null allele (PTEN+/? mice) spontaneously develop a variety of tumours in multiple organs. PTEN is a phosphatase with selectivity for PtdIns(3,4,5)P3, which is produced by the class I isoforms of PI3K (p110α, p110β, p110γ and p110δ). Previous studies indicated that PTEN-deficient cancer cell lines mainly depend on p110β, and that p110β, but not p110α, controls mouse prostate cancer development driven by PTEN loss. In the present study, we investigated whether the ubiquitously expressed p110α can also functionally interact with PTEN in cancer. Using genetic mouse models that mimic systemic administration of p110α- or p110β-selective inhibitors, we confirm that inactivation of p110β, but not p110α, inhibits prostate cancer development in PTEN+/? mice, but also find that p110α inactivation protects from glomerulonephritis, pheochromocytoma and thyroid cancer induced by PTEN loss. This indicates that p110α can modulate the impact of PTEN loss in disease and tumourigenesis. In primary and immortalized mouse fibroblast cell lines, both p110α and p110β controlled steady-state PtdIns(3,4,5)P3 levels and Akt signalling induced by heterozygous PTEN loss. In contrast, no correlation was found in primary mouse tissues between PtdIns(3,4,5)P3 levels, PI3K/PTEN genotype and cancer development. Taken together, our results from the present study show that inactivation of either p110α or p110β can counteract the impact of PTEN inactivation. The potential implications of these findings for PI3K-targeted therapy of cancer are discussed.  相似文献   

7.
Signaling through phosphatidylinositol-3 kinases (PI3K) regulates fundamental cellular processes such as survival and growth, and these lipid kinases are currently being investigated as therapeutic targets in several contexts. In skeletal tissue, experiments using pan-specific PI3K inhibitors have suggested that PI3K signaling influences both osteoclast and osteoblast function, but the contributions of specific PI3K isoforms to these effects have not been examined. In the current work, we assessed the effects of pharmacological inhibitors of the class Ia PI3Ks, α, β, and δ, on bone cell growth, differentiation and function in vitro. Each of the class Ia PI3K isoforms is expressed and functionally active in bone cells. No consistent effects of inhibitors of p110-β or p110-δ on bone cells were observed. Inhibitors of p110-α decreased osteoclastogenesis by 60-80% (p < 0.001 vs control) by direct actions on osteoclast precursors, and decreased the resorptive activity of mature osteoclasts by 60% (p < 0.01 vs control). The p110-α inhibitors also decreased the growth of osteoblastic and stromal cells (p < 0.001 vs control), and decreased differentiated osteoblast function by 30% (p < 0.05 vs control). These data suggest that signaling through the p110-α isoform of class Ia PI3Ks positively regulates the development and function of both osteoblasts and osteoclasts. Therapeutic agents that target this enzyme have the potential to significantly affect bone homeostasis, and evaluation of skeletal endpoints in clinical trials of such agents is warranted.  相似文献   

8.
Orexin-A is an important neuropeptide involved in the regulation of feeding, arousal, energy consuming, and reward seeking in the body. The effects of orexin-A have widely studied in neurons but not in astrocytes. Here, we report that OX1R and OX2R are expressed in cultured rat astrocytes. Orexin-A stimulated the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and then induced the migration of astrocytes via its receptor OX1R but not OX2R. Orexin-A-induced ERK1/2 phosphorylation and astrocytes migration are Ca2+-dependent, since they could be inhibited by either chelating the extracellular Ca2+ or blocking the pathway of store-operated calcium entry (SOCE). Furthermore, both non-selective protein kinase C (PKC) inhibitor and PKCα selective inhibitor, but not PKCδ inhibitor, prevented the increase in ERK1/2 phosphorylation and the migration of astrocytes, indicating that the Ca2+-dependent PKCα acts as the downstream of the OX1R activation and mediates the orexin-A-induced increase in ERK1/2 phosphorylation and cell migration. In conclusion, these results suggest that orexin-A can stimulate ERK1/2 phosphorylation and then facilitate the migration of astrocytes via PLC-PKCα signal pathway, providing new knowledge about the functions of the OX1R in astrocytes.  相似文献   

9.
Phosphatidylinositol-3-kinases (PI3Ks) are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate to generate a key lipid second messenger, phosphatidylinositol 3,4,5-bisphosphate. PI3Kα and PI3Kγ require activation by RAS proteins to stimulate signaling pathways that control cellular growth, differentiation, motility and survival. Intriguingly, RAS binding to PI3K isoforms likely differ, as RAS mutations have been identified that discriminate between PI3Kα and PI3Kγ, consistent with low sequence homology (23%) between their RAS binding domains (RBDs). As disruption of the RAS/PI3Kα interaction reduces tumor growth in mice with RAS- and epidermal growth factor receptor driven skin and lung cancers, compounds that interfere with this key interaction may prove useful as anti-cancer agents. However, a structure of PI3Kα bound to RAS is lacking, limiting drug discovery efforts. Expression of full-length PI3K isoforms in insect cells has resulted in low yield and variable activity, limiting biophysical and structural studies of RAS/PI3K interactions. This led us to generate the first RBDs from PI3Kα and PI3Kγ that can be expressed at high yield in bacteria and bind to RAS with similar affinity to full-length PI3K. We also solved a 2.31 Å X-ray crystal structure of the PI3Kα-RBD, which aligns well to full-length PI3Kα. Structural differences between the PI3Kα and PI3Kγ RBDs are consistent with differences in thermal stability and may underly differential RAS recognition and RAS-mediated PI3K activation. These high expression, functional PI3K RBDs will aid in interrogating RAS interactions and could aid in identifying inhibitors of this key interaction.  相似文献   

10.
The phosphoinositide 3-kinase (PI3K) is frequently activated in human cancer cells due to gain of function mutations in the catalytic (p110) and the regulatory (p85) subunits. The regulatory subunit consists of an SH3 domain and two SH2 domains. An oncogenic form of p85α named p65 lacking the c-terminal SH2 domain (cSH2) has been cloned from an irradiation-induced murine thymic lymphoma and transgenic mice expressing p65 in T lymphocytes develop a lymphoproliferative disorder. We have recently detected a c-terminal truncated form of p85α named p76α in a human lymphoma cell line lacking most of the cSH2 domain due to a frame shift mutation. Here, we report that the deletion of the cSH2 domain enhances the activating effects of the n-terminal SH2 domain (nSH2) mutants K379E and R340E on the PI3K/Akt pathway and micro tumor formation in a focus assay. Further analysis revealed that this transforming effect is mediated by activation of the catalytic PI3K isoform p110α and downstream signaling through mTOR. Our data further support a mechanistic model in which mutations of the cSH2 domain of p85α can abrogate its negative regulatory function on PI3K activity via the nSH2 domain of p85α.  相似文献   

11.
PI3Kα remains an attractive target for the development of anticancer targeted therapy. A number of p110α crystal structures in complex with the nSH2-iSH2 fragment of p85 regulatory subunit have been reported, including a few small molecule co-crystal structures, but the utilization of this crystal form is limited by low diffraction resolution and a crystal packing artifact that partially blocks the ATP binding site. Taking advantage of recent data on the functional characterization of the lipid binding properties of p110α, we designed a set of novel constructs allowing production of isolated stable p110α subunit missing the Adapter Binding Domain and lacking or featuring a modified C-terminal lipid binding motif. While this protein is not catalytically competent to phosphorylate its substrate PIP2, it retains ligand binding properties as indicated by direct binding studies with a pan-PI3Kα inhibitor. Additionally, we determined apo and PF-04691502 bound crystal structures of the p110α (105-1048) subunit at 2.65 and 2.85 Å, respectively. Comparison of isolated p110α(105-1048) with the p110α/p85 complex reveals a high degree of structural similarity, which validates suitability of this catalytically inactive p110α for iterative SBDD. Importantly, this crystal form of p110α readily accommodates the binding of noncovalent inhibitor by means of a fully accessible ATP site. The strategy presented here can be also applied to structural studies of other members of PI3KIA family.  相似文献   

12.
The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gβγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gβγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gβγ releases inhibitory C-terminal domains to expose the Rac1 binding site.  相似文献   

13.
MicroRNAs (miRNAs) are a novel class of powerful, endogenous regulators of gene expression. This study identified 16 differentially expressed miRNAs in ischemic myocardium of rats using TaqMan Low Density Array. In addition, bioinformatics analyses, such as Gene ontology and Pathway assays, were applied to determine the apoptosis pathway, only regulated by miR-384-5p, and all the associated target genes (PIK3CD, PPP3CA, PPP3CB, PPP3R1, CASP3 and IL1A). These target genes, besides PIK3CB, were shown to be significantly up-regulated by qRT-PCR assay, which further suggested that PIK3CD, PPP3CA, PPP3R1, CASP3, IL1A could be regulated by miR-384-5p. MTT, Western blot, qRT-PCR and luciferase assays were used to investigate the role of miR-384-5p in myocardial ischemia. We found that cleaved caspase3 expression was up-regulated by miR-384-5p and down-regulated by miR-384-5p inhibitor suggesting that apoptosis pathway was regulated by miR-384-5p. We also found that miR-384-5p suppressed cell viability while miR-384-5p inhibitor improved it, confirming H9c2 cell survival was affected by miR-384-5p. In addition, the PIK3CD protein level in H9c2 cells was up-regulated by miR-384-5p inhibitor. We found that miR-384-5p expression level decreased and PIK3CD protein level increased in both ischemic myocardium of rats and hypoxic H9c2 cells, and that miR-384-5p suppress PIK3CD expression through a miR-384-5p binding site within the 3′ untranslational region of PIK3CD. These results show that miR-384-5p, an important protecting factor, plays a significant role in cardioprotection by regulating PIK3CD in myocardial ischemia.  相似文献   

14.
Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described. More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation of the Rac 1/PYGM pathway. IL-2-stimulated serine phosphorylation was corroborated in Kit 225 T cells cultures. A parallel pharmacological and genetic approach identified PKCθ as the serine/threonine kinase responsible for αPIX serine phosphorylation. The phosphorylated state of αPIX was required to activate first Rac 1 and subsequently PYGM. These results demonstrate that the IL-2 receptor activation, among other early events, leads to activation of PKCθ. To activate Rac 1 and consequently PYGM, PKCθ phosphorylates αPIX in T cells. The biological significance of this PKCθ/αPIX/Rac 1 GTPase/PYGM signaling pathway seems to be the control of different cellular responses such as migration and proliferation.  相似文献   

15.
Hypertrophic scar (HS) is a serious skin fibrotic disease characterized by the excessive proliferation of fibroblasts and often considered as a kind of benign skin tumor. microRNA-155 (miR-155) is usually served as a promising marker in antitumor therapy. In view of the similarities of hypertrophic scar and tumor, it is predicted that miR-155 may be a novel therapeutic target in clinical trials. Here we found the expression levels of miR-155 was gradually down regulated and HIF-1α was upregulated in HS tissue and HS derived fibroblasts (HFs). And cell proliferation was inhibited when miR-155 was overexpressed or HIF-1α was silenced. Moreover, overexpression of miR-155 in HFs could reduce the expression of collagens in vitro and inhibit the collagen fibers arrangement in vivo, whereas miR-155 knockdown gave opposite results. Furthermore, we found that miR-155 directly targeted the HIF-1α, which could also independently inhibit the expression of collagens in vitro and obviously improved the appearance and architecture of the rabbit ear scar in vivo when it was silencing. Finally, we found that PI3K/AKT pathway was enrolled in these processes. Together, our results indicated that miR-155 was a critical regulator in the formation and development of hypertrophic scar and might be a potential molecular target for hypertrophic scar therapy.  相似文献   

16.
Methylation of histone H3 on lysine 9 or 27 is crucial for heterochromatin formation. Previously considered hallmarks of, respectively, constitutive and facultative heterochromatin, recent evidence has accumulated in favor of coexistence of these two marks and their cooperation in gene silencing maintenance. H3K9me2/3 ensures anchorage at chromatin of heterochromatin protein 1α (HP1α), a main component of heterochromatin. HP1α chromoshadow domain, involved in dimerization and interaction with partners, has additional but still unclear roles in HP1α recruitment to chromatin. Because of previously suggested links between polycomb repressive complex 2 (PRC2), which catalyzes H3K27 methylation, and HP1α, we tested whether PRC2 may regulate HP1α abundance at chromatin. We found that the EZH2 and SUZ12 subunits of PRC2 are required for HP1α stability, as knockdown of either protein led to HP1α degradation. Similar results were obtained upon overexpression of H3K27me2/3 demethylases. We further showed that binding of HP1α/β/γ to H3K9me3 peptides is greatly increased in the presence of H3K27me3, and this is dependent on PRC2. These data fit with recent proteomic studies identifying PRC2 as an indirect H3K9me3 binder in mouse tissues and suggest the existence of a cooperative mechanism of HP1α anchorage at chromatin involving H3 methylation on both K9 and K27 residues.  相似文献   

17.
Integrin-mediated cell adhesion activates several signaling effectors, including phosphatidylinositol 3-kinase (PI3K), a central mediator of cell motility and survival. To elucidate the molecular mechanisms of this important pathway the specific members of the PI3K family activated by different integrins have to be identified. Here, we studied the role of PI3K catalytic isoforms in β1 integrin-induced lamellipodium protrusion and activation of Akt in fibroblasts. Real-time total internal reflection fluorescence imaging of the membrane–substrate interface demonstrated that β1 integrin-mediated attachment induced rapid membrane spreading reaching essentially maximal contact area within 5–10 min. This process required actin polymerization and involved activation of PI3K. Isoform-selective pharmacological inhibition identified p110α as the PI3K catalytic isoform mediating both β1 integrin-induced cell spreading and Akt phosphorylation. A K756L mutation in the membrane-proximal part of the β1 integrin subunit, known to cause impaired Akt phosphorylation after integrin stimulation, induced slower cell spreading. The initial β1 integrin-regulated cell spreading as well as Akt phosphorylation were sensitive to the tyrosine kinase inhibitor PP2, but were not dependent on Src family kinases, FAK or EGF/PDGF receptor transactivation. Notably, cells expressing a Ras binding-deficient p110α mutant were severely defective in integrin-induced Akt phosphorylation, but exhibited identical membrane spreading kinetics as wild-type p110α cells.We conclude that p110α mediates β1 integrin-regulated activation of Akt and actin polymerization important for survival and lamellipodia dynamics. This could contribute to the tumorigenic properties of cells expressing constitutively active p110α.  相似文献   

18.
Abstract

Context: G-protein coupled receptor (GPCR) signaling in skeletal muscle is incompletely understood; in particular, the signaling pathways that regulate GPCR-mediated signaling in skeletal muscle are only beginning to be established. Lysophosphatidic acid (LPA) is a GPCR agonist that has previously been shown to activate protein kinase D (PKD) in non-muscle cells; however, whether PKD is activated in response to LPA in skeletal muscle myoblasts, and the identities of signaling intermediates that regulate this activation, have not been defined. Objective: To determine whether PKD is activated in response to LPA administration in myoblasts, and to define the signaling pathways that mediate LPA-stimulated PKD phosphorylation. Methods: C2C12 myoblasts were treated with LPA and signaling pathways examined by means of Western immunoblotting and real-time PCR (RT-PCR). Pharmacological inhibition and RNA-interference were used to target specific molecules to determine their involvement in LPA-induced PKD phosphorylation. Results: Treatment of myoblasts with exogenous LPA revealed that PI3K p110β mediated PKD phosphorylation at Ser 748 and at Ser 916 through kinase-dependent and kinase-independent mechanisms. Loss of PKCδ, but not the loss of PKCα, prevented LPA-induced PKD phosphorylation. The PKD isoform responsive to LPA treatment was identified as PKD2. Conclusion: These results indicate that LPA-stimulated PKD2 phosphorylation requires PKCδ and non-catalytic actions of PI3K p110β, and provide new information with respect to GPCR-mediated signal transduction in myoblasts.  相似文献   

19.
Cardiac remodeling is associated with inflammation and apoptosis. Galangin, as a natural flavonol, has the potent function of regulating inflammation and apoptosis, which are factors related to cardiac remodeling. Beginning 3 days after aortic banding (AB) or Sham surgery, mice were treated with galangin for 4 weeks. Cardiac remodeling was assessed according to echocardiographic parameters, histological analyses, and hypertrophy and fibrosis markers. Our results showed that galangin administration attenuated cardiac hypertrophy, dysfunction, and fibrosis response in AB mice and angiotensin II-treated H9c2 cells. The inhibitory action of galangin in cardiac remodeling was mediated by MEK1/2–extracellular-regulated protein kinases 1/2 (ERK1/2)–GATA4 and phosphoinositide 3-kinase (PI3K)–protein kinase B (AKT)–glycogen synthase kinase 3β (GSK3β) activation. Furthermore, we found that galangin inhibited inflammatory response and apoptosis. Our findings suggest that galangin protects against cardiac remodeling through decreasing inflammatory responses and apoptosis, which are associated with inhibition of the MEK1/2–ERK1/2–GATA4 and PI3K–AKT–GSK3β signals.  相似文献   

20.
Recognition of bacterial constituents by mast cells (MCs) is dependent on the presence of pattern recognition receptors, such as Toll-like receptors (TLRs). The final cellular response, however, depends on the influence of multiple environmental factors. In the current study we tested the hypothesis that the PI3K-activating ligands insulin-like growth factor-1 (IGF-1), insulin, antigen, and Steel Factor (SF) are able to modulate the TLR4-mediated production of proinflammatory cytokines in murine MCs. Costimulation with any of these ligands caused increased LPS-triggered secretion of IL-6 and TNF-α, but attenuated the production of IL-1β, though all three cytokines were produced in an NFκB-dependent manner. The pan-specific PI3K-inhibitor Wortmannin reverted the altered production of these cytokines. In agreement, MCs deficient for SHIP1, a negative regulator of the PI3K pathway, showed augmented secretion of IL-6/TNF-α and reduced production of IL-1β in response to LPS alone. The differential effects of IGF-1 on TLR4-mediated cytokine production were also observed in the context of TLR2 and IL-33 receptor-mediated MC activation. Importantly, these effects were seen in both bone marrow-derived and peritoneal MCs, suggesting general relevance for MCs. Using pharmacological and genetic tools, we could show that the p110δ isoform of PI3K is strongly implicated in SF-triggered suppression of LPS-induced IL-1β production. Costimulation with antigen was affected to a lesser extent. In conclusion, NFκB-dependent production of proinflammatory cytokines in MCs is differentially controlled by PI3K-activating ligand/receptor systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号