首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effects of probiotic Lactobacillus strains of Lactobacillus agilis JCM 1048 and Lactobacillus salivarius subsp. salicinius JCM 1230 on jejunal and cecal microbiota of broiler chicken under heat stress condition using terminal restriction fragment length polymorphism (T-RFLP) analysis. The jejunal bacterial community was limited to a few bacterial groups, mostly Lactobacillus spp. A relatively abundant and higher prevalence of Lactobacillus spp. were observed in the jejunal and cecal microbiota of the probiotic chickens compared with those of the control chickens under heat stress condition. In general, the probiotic strains did not significantly affect the abundance of L. agilis and L. salivarius in chicken intestine but clearly contributed to increasing their prevalence in the probiotic chickens. The probiotic Lactobacillus strains enriched the diversity of Lactobacillus flora in chicken jejunum and cecum by increasing the abundance and prevalence of Lactobacillus spp. inhabiting the intestine. The richness of Lactobacillus species tended to be similar among the jejunal and cecal microbiota. The bacterial community of cecum was complex and age-dependent. The major components of the cecal microbiota were clostridia and lactobacilli. The Clostridium subcluster XIVa was the most predominant group in chicken cecum. Probiotic Lactobacillus strains restored the microbial balance and maintained the natural stability of indigenous bacterial microbiota following heat stress-induced changes.  相似文献   

2.
Given the recurrent bat‐associated disease outbreaks in humans and recent advances in metagenomics sequencing, the microbiota of bats is increasingly being studied. However, obtaining biological samples directly from wild individuals may represent a challenge, and thus, indirect passive sampling (without capturing bats) is sometimes used as an alternative. Currently, it is not known whether the bacterial community assessed using this approach provides an accurate representation of the bat microbiota. This study was designed to compare the use of direct sampling (based on bat capture and handling) and indirect sampling (collection of bat's excretions under bat colonies) in assessing bacterial communities in bats. Using high‐throughput 16S rRNA sequencing of urine and feces samples from Rousettus aegyptiacus, a cave‐dwelling fruit bat species, we found evidence of niche specialization among different excreta samples, independent of the sampling approach. However, sampling approach influenced both the alpha‐ and beta‐diversity of urinary and fecal microbiotas. In particular, increased alpha‐diversity and more overlapping composition between urine and feces samples was seen when direct sampling was used, suggesting that cross‐contamination may occur when collecting samples directly from bats in hand. In contrast, results from indirect sampling in the cave may be biased by environmental contamination. Our methodological comparison suggested some influence of the sampling approach on the bat‐associated microbiota, but both approaches were able to capture differences among excreta samples. Assessment of these techniques opens an avenue to use more indirect sampling, in order to explore microbial community dynamics in bats.  相似文献   

3.
Symbiotic association is universal in nature, and an array of symbionts play a crucial part in host life history. Aphids and their diverse symbionts have become a good model system to study insect-symbiont interactions. Previous symbiotic diversity surveys have mainly focused on a few aphid clades, and the relative importance of different factors regulating microbial community structure is not well understood. In this study, we collected 65 colonies representing eight species of the aphid genus Mollitrichosiphum from different regions and plants in southern China and Nepal and characterized their microbial compositions using Illumina sequencing of the V3 − V4 hypervariable region of the 16S rRNA gene. We evaluated how microbiota varied across aphid species, geography and host plants and the correlation between microbial community structure and host aphid phylogeny. Heritable symbionts dominated the microbiota associated with Mollitrichosiphum, and multiple infections of secondary symbionts were prevalent. Ordination analyses and statistical tests highlighted the contribution of aphid species in shaping the structures of bacterial, symbiont and secondary symbiont communities. Moreover, we observed a significant correlation between Mollitrichosiphum aphid phylogeny and microbial community composition, providing evidence for a pattern of phylosymbiosis between natural aphid populations and their microbial associates.  相似文献   

4.
滴灌对苜蓿根际土壤细菌多样性和群落结构的影响   总被引:2,自引:1,他引:1  
【背景】细菌作为土壤微生物中的重要类群,能够有效促进土壤物质循环和能量流动,细菌多样性以及群落结构能够反映土壤的质量状况。【目的】了解滴灌条件下苜蓿根际土壤细菌群落结构及多样性变化,探讨土壤环境因子对细菌群落结构的影响。【方法】基于细菌16Sr RNAV3-V4区高通量测序技术,分析比较滴灌与自然降雨两种模式下生长的苜蓿根际与非根际土壤中细菌多样性和群落分布规律,然后采用冗余分析(Redundancy analysis,RDA)探讨土壤环境因子与细菌多样性的关系。【结果】苜蓿根际土壤中细菌多样性丰富,滴灌根际土壤中细菌多样性显著高于自然降雨根际土壤;土壤样品中共检测到细菌46门53纲116目220科469属,主要的优势菌门为变形菌门(Proteobacteria,25.27%-34.42%),其中α-变形菌纲(Alphaproteobacteria,11.41%-18.97%)为优势亚群,鞘氨醇单胞菌属(Sphingomonas,1.00%-4.54%)为优势属。相较于自然降雨,滴灌条件下苜蓿根际土壤细菌的6个门和16个属的群落结构发生显著变化;此外,RDA分析表明,不同环境因子对微生物群落的影响不同,滴灌根际土壤中9个细菌属的丰度与全磷、全钾、有效磷、碱解氮、有机质、土壤中性磷酸酶以及土壤脲酶的含量显著正相关。【结论】滴灌作为新型节水技术,在促进植物生长、提高产量、节约成本的基础上增加了植物根际土壤中细菌多样性和丰度,该结果为新型灌溉体制的改革以及土壤微生物资源的开发利用提供科学数据。  相似文献   

5.
Methods to estimate microbial diversity have developed rapidly in an effort to understand the distribution and diversity of microorganisms in natural environments. For bacterial communities, the 16S rRNA gene is the phylogenetic marker gene of choice, but most studies select only a specific region of the 16S rRNA to estimate bacterial diversity. Whereas biases derived from from DNA extraction, primer choice and PCR amplification are well documented, we here address how the choice of variable region can influence a wide range of standard ecological metrics, such as species richness, phylogenetic diversity, β-diversity and rank-abundance distributions. We have used Illumina paired-end sequencing to estimate the bacterial diversity of 20 natural lakes across Switzerland derived from three trimmed variable 16S rRNA regions (V3, V4, V5). Species richness, phylogenetic diversity, community composition, β-diversity, and rank-abundance distributions differed significantly between 16S rRNA regions. Overall, patterns of diversity quantified by the V3 and V5 regions were more similar to one another than those assessed by the V4 region. Similar results were obtained when analyzing the datasets with different sequence similarity thresholds used during sequences clustering and when the same analysis was used on a reference dataset of sequences from the Greengenes database. In addition we also measured species richness from the same lake samples using ARISA Fingerprinting, but did not find a strong relationship between species richness estimated by Illumina and ARISA. We conclude that the selection of 16S rRNA region significantly influences the estimation of bacterial diversity and species distributions and that caution is warranted when comparing data from different variable regions as well as when using different sequencing techniques.  相似文献   

6.
Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.  相似文献   

7.

Background

Variations in the composition of the human intestinal microbiota are linked to diverse health conditions. High-throughput molecular technologies have recently elucidated microbial community structure at much higher resolution than was previously possible. Here we compare two such methods, pyrosequencing and a phylogenetic array, and evaluate classifications based on two variable 16S rRNA gene regions.

Methods and Findings

Over 1.75 million amplicon sequences were generated from the V4 and V6 regions of 16S rRNA genes in bacterial DNA extracted from four fecal samples of elderly individuals. The phylotype richness, for individual samples, was 1,400–1,800 for V4 reads and 12,500 for V6 reads, and 5,200 unique phylotypes when combining V4 reads from all samples. The RDP-classifier was more efficient for the V4 than for the far less conserved and shorter V6 region, but differences in community structure also affected efficiency. Even when analyzing only 20% of the reads, the majority of the microbial diversity was captured in two samples tested. DNA from the four samples was hybridized against the Human Intestinal Tract (HIT) Chip, a phylogenetic microarray for community profiling. Comparison of clustering of genus counts from pyrosequencing and HITChip data revealed highly similar profiles. Furthermore, correlations of sequence abundance and hybridization signal intensities were very high for lower-order ranks, but lower at family-level, which was probably due to ambiguous taxonomic groupings.

Conclusions

The RDP-classifier consistently assigned most V4 sequences from human intestinal samples down to genus-level with good accuracy and speed. This is the deepest sequencing of single gastrointestinal samples reported to date, but microbial richness levels have still not leveled out. A majority of these diversities can also be captured with five times lower sampling-depth. HITChip hybridizations and resulting community profiles correlate well with pyrosequencing-based compositions, especially for lower-order ranks, indicating high robustness of both approaches. However, incompatible grouping schemes make exact comparison difficult.  相似文献   

8.
The characterization of bacterial communities using DNA sequencing has revolutionized our ability to study microbes in nature and discover the ways in which microbial communities affect ecosystem functioning and human health. Here we describe Serial Illumina Sequencing (SI-Seq): a method for deep sequencing of the bacterial 16S rRNA gene using next-generation sequencing technology. SI-Seq serially sequences portions of the V5, V6 and V7 hypervariable regions from barcoded 16S rRNA amplicons using an Illumina short-read genome analyzer. SI-Seq obtains taxonomic resolution similar to 454 pyrosequencing for a fraction of the cost, and can produce hundreds of thousands of reads per sample even with very high multiplexing. We validated SI-Seq using single species and mock community controls, and via a comparison to cystic fibrosis lung microbiota sequenced using 454 FLX Titanium. Our control runs show that SI-Seq has a dynamic range of at least five orders of magnitude, can classify >96% of sequences to the genus level, and performs just as well as 454 and paired-end Illumina methods in estimation of standard microbial ecology diversity measurements. We illustrate the utility of SI-Seq in a pilot sample of central airway secretion samples from cystic fibrosis patients.  相似文献   

9.
10.
Aims: To compare the bacterial diversity of two different ecological regions including human forehead, human forearm and to estimate the influence of make‐up. Methods and Results: Twenty‐two swab‐scraped skin samples were analysed by profiling bacterial 16S rRNA genes using PCR‐based sequencing of randomly selected clones. Of the 1056 clones analysed, 67 genera and 133 species‐level operational taxonomic units (SLOTUs) belonging to eight phyla were identified. A core set of bacterial taxa was found in all samples, including Actinobacteria, Firmicutes, and Proteobacteria, but pronounced intra‐ and interpersonal variation in bacterial community composition was observed. Only 4·48% of the genera and 1·50% of the SLOTUs were found in all 11 subjects. In contrast to the highly diverse microbiota of the forearm skin, the forehead skin microbiota represented a small‐scale ecosystem with a few genera found in all individuals. The use of make‐up, including foundation and powder, significantly enlarged the community diversity on the forehead skin. Conclusions: Our study confirmed the presence of a highly diverse microbiota of the human skin as described recently. In contrast to forearm skin, gender does not seem to have much influence on the microbial community of the forehead skin. However, the use of make‐up was associated with a remarkable increase in the bacterial diversity. Significance and Impact of the Study: This study enhances our knowledge about the highly complex microbiota of the human skin and demonstrates for the first time the significant effect of make‐up on the bacterial diversity of the forehead skin.  相似文献   

11.
以青海高原2 300~4 000 m海拔范围的6处西北小檗(Berberis vernae)生境土壤为试材,采用高通量测序方法,分析不同海拔梯度西北小檗生境土壤微生物群落结构及多样性。研究结果表明:(1)在西北小檗生境土壤中,细菌群落组成主要包括10个细菌门21个细菌属,真菌群落由子囊菌门、担子菌门等8个真菌门59个真菌属组成。(2)低海拔位置的海东乐都1号样点(hdld1) 0~20 cm土层的细菌群落丰富性及多样性均最高,黄南泽库样点(hnzk) 0~20 cm土层的真菌群落丰富度最高,西宁大通样点(xndt) 0~20 cm土层的真菌群落多样性最高;随着海拔的升高,0~20 cm、40~60 cm土层的细菌群落丰富度及多样性呈现出先降低再升高再降低的趋势,20~40 cm土层的细菌群落丰富度及多样性则呈现出先升高后降低的趋势,0~20 cm、20~40 cm土层土壤微生物真菌群落丰富度呈现出先升高再降低再升高的趋势,0~20 cm、40~60 cm土层真菌群落多样性呈现先升高再降低的趋势,40~60 cm土层的真菌丰富度及20~40 cm土层的真菌多样性的变化趋势不明显。(3)硝态氮、速效磷和速效钾对土壤微生物群落的影响较明显。综上可知,高寒地区不同海拔梯度西北小檗生境土壤微生物群落结构多样性呈现出一定的海拔差异趋势,其海拔差异主要受到环境条件、土壤理化性质和植被分布的影响。  相似文献   

12.
The gut microbiota plays important roles in the health and well-being of animals, and high-throughput sequencing facilitates exploration of microbial populations in the animal gut. However, previous studies have focused on fecal samples instead of the gastrointestinal tract. In this study, we compared the microbiota diversity and composition of intestinal contents of weaned piglets treated with Lactobacillus reuteri or chlortetracycline (aureomycin) using high-throughput sequencing. Nine weaned piglets were randomly divided into three groups and supplemented with L. reuteri, chlortetracycline, or saline for 10 days, and then the contents of three intestinal segments (jejunum, colon, and cecum) were obtained and used for sequencing of the V3–V4 hypervariable region of the 16S rRNA gene. The microbiota diversity and composition in the jejunum were different from those in the colon and cecum among the three treatments. In the jejunum, treatment with L. reuteri increased the species richness of the microbiota, as indicated by the ACE and Chao1 indexes, compared with the chlortetracycline group, in which several taxa were eliminated. In the colon and cecum, relative abundances of the phylum Firmicutes and the genus Prevotella were higher in the chlortetracycline group than in the other groups. Distances between clustered samples revealed that the L. reuteri group was closer to the chlortetracycline group than the control group for jejunum samples, while colon and cecum samples of the L. reuteri group were clustered with those of the control group. This study provides fundamental knowledge for future studies such as the development of alternatives to antibiotics.  相似文献   

13.
Fredricks DN 《Anaerobe》2011,17(4):191-195
The human vagina hosts a collection of microbes that is distinct from other human surfaces and mucosal sites, with reduced microbial diversity that is likely driven by the acidic environment. The microbial ecosystem of the vagina is dominated by lactobacilli in women without bacterial vaginosis (BV), and is characterize by increased species richness, diversity, and evenness in women with BV. The use of molecular, cultivation-independent methods to describe the bacterial biota of the human vagina has revealed many novel putative anaerobes in women with BV, and has demonstrated the almost ubiquitous nature of Lactobacillus iners which is found in most women regardless of BV status. A variety of molecular tools are being employed to study the vaginal microbiota, and each approach has distinct advantages and disadvantages that are reviewed. Longitudinal studies have demonstrated that the vaginal microbiota can be highly dynamic, with dramatic shifts in bacterial composition and concentrations in response to numerous endogenous and exogenous factors.  相似文献   

14.
High‐throughput sequencing approaches have enabled characterizations of the community composition of numerous gut microbial communities, which in turn has enhanced interest in their diversity and functional relationships in different groups of vertebrates. Although fishes represent the greatest taxonomic and ecological diversity of vertebrates, our understanding of their gut microbiota and its functional significance has lagged well behind that of terrestrial vertebrates. In order to highlight emerging issues, we provide an overview of research on fish gut microbiotas and the biology of their hosts. We conclude that microbial community composition must be viewed within an informed context of host ecology and physiology, and that this is of particular importance with respect to research planning and sampling design.  相似文献   

15.
刘君  王宁  崔岱宗  卢磊  赵敏 《生物多样性》2019,27(8):911-36
土壤细菌是森林生态系统的一个重要组成成分, 是生态系统中物质循环和能量流动的重要参与者, 细菌群落组成和生物多样性是反映土壤生态功能的重要指标。本文利用高通量测序技术分析了大亮子河国家森林公园内红松(Pinus koraiensis)林、落叶松(Larix gmelinii)林、蒙古栎(Quercus mongolica)林、枫桦(Betula costata)林、针阔混交林、灌木林和草甸等7种不同生境土壤细菌群落组成和多样性的差异性, 探讨该地区土壤细菌群落对不同生境的响应, 为地区森林生态系统的经营管理及生态系统稳定性的维护提供科学理论基础。在门的水平上, 各生境的细菌群落组成基本一致, 其中变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)和疣微菌门(Verrucomicrobia)在7种生境土壤中相对丰度均大于10.0%, 是细菌中的优势菌门。在属的水平上, 共测得245个菌属, 各样地共有属118个, 占总属数的48.2%, 占总相对丰度的97.8%; 优势菌属分别为Spartobacteria_ genera_incertae_sedisGaiellaGp16Gp4, 占总相对丰度的47.0%, Spartobacteria_genera_incertae_sedis在7种生境土壤中丰度均最高。7种生境下的土壤细菌多样性和土壤理化因子存在着显著的差异, 红松林的土壤细菌群落多样性和丰富度均高于其他生境。土壤pH是大亮子河森林公园影响土壤细菌多样性的关键因子。  相似文献   

16.
The microbiome associated with brown planthopper (BPH) plays an important role in mediating host health and fitness. Characterization of the microbial community and its structure is prerequisite for understanding the intricate symbiotic relationships between microbes and host insect. Here, we investigated the bacterial and fungal communities of BPH at different developmental stages using high‐throughput amplicon sequencing. Our results revealed that both the bacterial and fungal communities were diverse and dynamic during BPH development. The bacterial communities were generally richer than fungi in each developmental stage. At 97% similarly, 19 phyla and 278 genera of bacteria were annotated, while five fungal phyla comprising 80 genera were assigned. The highest species richness for the bacterial communities was detected in the nymphal stage. The taxonomic diversity of the fungal communities in female adults was generally at a relatively higher level when compared to other developmental stages. The most dominant phylum of bacteria and fungi at each developmental stage all belonged to Proteobacteria and Ascomycota, respectively. A significantly lower abundance of bacterial genus Acinetobacter was recorded in the egg stage when compared to other developmental stages, while the dominant fungal genus Wallemia was more abundant in the nymph and adult stages than in the egg stage. Additionally, the microbial composition differed between male and female adults, suggesting that the microbial communities in BPH were gender‐dependent. Overall, our study enriches our knowledge on the microbial communities associated with BPH and will provide clues to develop potential biocontrol techniques against this rice pest.  相似文献   

17.
卓娜  伊丽  浩斯娜  吉日木图 《微生物学报》2019,59(10):1948-1959
【目的】传统发酵乳制品是一类未经任何处理自然发酵而成的,其微生态环境未遭破坏,从而乳酸菌的生物学特性和基因多样性得到了很好的保留,具有开发和利用价值。自然发酵酸驼乳常用来治疗多种疾病且效果良好,与其中丰富的乳酸菌资源有着密不可分的联系。然而,目前有关自然发酵酸驼乳微生物菌群及多样性相关研究甚少。因此进一步挖掘内蒙古地区双峰驼自然发酵酸驼乳微生物群落结构和多样性是至关重要的。【方法】本研究采用IlluminaMiseq测序技术,测定了苏尼特和阿拉善双峰驼的自然发酵酸驼乳中微生物16S rRNA V3–V4区序列,并对群落结构和多样性进行了比较分析。【结果】多样性分析表明,苏尼特双峰驼酸驼乳中微生物群落丰富度和种群差异性比阿拉善双峰驼酸驼乳大,细菌多样性也高。在门水平上,苏尼特和阿拉善双峰驼酸驼乳中的菌群均以厚壁菌门(Firmicutes)和变形菌门(Proteobacteria)为主。在属水平上,苏尼特双峰驼酸驼乳主要以乳杆菌属(Lactobacillus)和乳球菌属(Lactococcus)为优势菌群,阿拉善双峰驼酸驼乳以乳杆菌属(Lactobacillus)和醋酸杆菌属(Acetobacter)为优势菌属。此外,肠杆菌属(Enterobacter)、拉乌尔菌属(Raoultella)和明串珠菌属(Leuconostoc)等的含有食源性致病菌和环境污染菌的菌属被检出。综上所述,不同地区不同品种酸驼乳的乳酸菌种类及优势菌群有较大差异,存在显著的地理差异。【结论】通过本研究,不仅对苏尼特和阿拉善双峰驼自然发酵酸驼乳乳酸菌的组成和种类有了明确的认知,为评估发酵酸驼乳微生物群落对消费者身体健康的影响提供了数据基础的同时为今后筛选优势菌群和挖掘新型益生菌奠定基础。  相似文献   

18.
Changes in agricultural land-use of saltmarshes along the German North Sea coast have favoured the succession of the marsh grass Elytrigia atherica over the long-established Spartina anglica. Consequently, E. atherica represents a potential food source of increasing importance for plant-feeding soil detritivores. Considering the importance of this ecological guild for decomposition processes and nutrient cycling, we focussed on two sympatric saltmarsh soil macrodetritivores and their associated gut microbiota to investigate how the digestive processes of these species may be affected by changing plant food sources. Using genetic fingerprints of partial 16S rRNA gene sequences, we analysed composition and diversity of the bacterial gut community in a diplopod and an amphipod crustacean in relation to different feeding regimes representing the natural vegetation changes. Effects of syntopy on the host-specific gut microbiota were also taken into account by feeding the two detritivore species either independently or on the same plant sample. Bacterial community composition was influenced by both the host species and the available plant food sources, but the latter had a stronger effect on microbial community structure. Furthermore, bacterial diversity was highest after feeding on a mixture of both plant species, regardless of the host species. The gut microbiota of these two detritivores can thus be expected to change along with the on-going succession at the plant community level in this environment. Cloning and sequencing of bacterial 16S rRNA gene fragments further indicated a host-related effect since the two detritivores differed in terms of predominant bacterial taxa: diplopods harboured mainly representatives of the phyla Bacteroidetes and Gammaproteobacteria. In contrast, the genus Vibrio was found for the amphipod host across all feeding conditions.  相似文献   

19.
The objective of this study was to analyze human fecal Lactobacillus community and its relationship with rheumatoid arthritis. Samples taken from rheumatoid arthritis (RA) patients and healthy individuals were analyzed by quantitative real-time PCR. Bacterial DNA was extracted from feces, and amplicons of the Lactobacillus-specific regions of 16S rRNA were analyzed by denaturing gradient gel electrophoresis. The richness, Shannon-Wiener index, and evenness of gut microbiota of both groups were analyzed to compare fecal Lactobacillus community structures. Results of this study demonstrated that fecal microbiota of RA patients contained significantly more Lactobacillus (10.62 ± 1.72 copies/g) than the control group (8.93 ± 1.60 copies/g). Significant increases were observed in RA patients in terms of the richness, Shannon-Wiener, and evenness measures, indicating more bacterial species, and increased bacterial diversity and abundance. These results suggest a potential relationship between Lactobacillus communities and the development and progression of rheumatoid arthritis.  相似文献   

20.

Background

Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition.

Methodology/Principal Findings

We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0–4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2–13) OTUs0.03 and 7.9 (range 2–16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations.

Conclusions/Significance

We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号