首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The Src family tyrosine kinase Lck is essential for T cell development and T cell receptor (TCR) signaling. Lck is post-translationally fatty acylated at its N-terminus conferring membrane targeting and concentration in plasma membrane lipid rafts, which are lipid-based organisational platforms. Confocal fluorescence microscopy shows that Lck colocalizes in rafts with GPI-linked proteins, the adaptor protein LAT and Ras, but not with non-raft membrane proteins including the protein tyrosine phosphatase CD45. The TCR also associates with lipid rafts and its cross-linking causes coaggregation of raft-associated proteins including Lck, but not of CD45. Cross-linking of either the TCR or rafts strongly induces specific tyrosine phosphorylation of the TCR in the rafts. Remarkably, raft patching alone induces signalling events analogous to TCR stimulation, with the same dependence on expression of key TCR signalling molecules. Our results indicate a mechanism whereby TCR engagement promotes aggregation of lipid rafts, which facilitates colocalization of signaling proteins including Lck, LAT, and the TCR, while excluding CD45, thereby potentiating protein tyrosine phosphorylation and downstream signaling. We are currently testing this hypothesis as well as using imaging techniques such as fluorescence resonance energy transfer (FRET) microscopy to study the dynamics of proteins and lipids in lipid rafts in living cells undergoing signaling events. Recent data show that the key phosphoinositide PI(4,5)P2 is concentrated in T cell lipid rafts and that on stimulation of the cells it is rapidly converted to PI(3,4,5)P3 and diacylglycerol within rafts. Thus rafts are hotspots for both protein and lipid signalling pathways.  相似文献   

3.
4.
Nitric oxide (NO) has been suggested to play a role in the hypersensitive response (HR). Single- and double-label fluorescence microscopy experiments were conducted using Arabidopsis leaves infected with Pseudomonas syringae pv. tomato DC3000 carrying either avrB or avrRpt2. Kinetics of NO production were followed by measurement of green 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) triazole fluorescence in leaves coinfiltrated with DAF-FM diacetate. Kinetics of hypersensitive cell death were followed by measurement of cytoplasmic red fluorescence following internalization of coinfiltrated propidium iodide through compromised plasma membranes. Neither NO accumulation nor cell death was seen until approximately 3 h postinoculation of Columbia leaves with DC3000.avrB or approximately 5.5 h post-inoculation with DC3000.avrRpt2. Subsequent NO accumulation kinetics closely paralleled HR progression in both Columbia and ndr1-1 mutant plants. These data established that NO accumulation does not happen sufficiently early for NO to be a signaling component controlling HR triggering. NO accumulation did contribute to the HR, as proven by an approximately 1-h delay in cell death kinetics caused by an NO scavenger or an NO synthase inhibitor. NO was first seen as punctate foci at the cell surface. Subsequent NO accumulation patterns were consistent with NO being an intercellular signal that functions in cell-to-cell spread of the HR.  相似文献   

5.
ART-1, a cell surface ADP-ribosyltransferase, is imbedded in the membrane by a glycosylphosphatidylinositol anchor. Function of this enzyme in mouse T lymphocytes is to transfer ADP-ribose groups from NAD to arginine residues, exposed on the extracellular domain of cell surface molecules. As a consequence, T cell responses are modulated. To explore the precise action of the enzyme, the T cell lymphoma EL-4 was transfected with the ART-1 gene, and its effects were examined. It is shown that ART-1 ADP-ribosylates distinct cell surface molecules, causing inhibition of T cell receptor signaling, concomitant to suppression of p56(lck) kinase activation. These effects are explained by failure of T cell receptors and co-receptors to associate into a contiguous and functional receptor cluster.  相似文献   

6.
7.
Many proteins with pivotal roles in T cell activation are modified by fatty acylation. Examples of these include transmembrane proteins such as the co-receptors CD4 and CD8, the adaptors LAT and Cbp/PAG, the pre-TCR as well as proteins synthesized on free cytosolic ribosomes, such as the Src-related tyrosine kinases Lck and Fyn. The two main types of fatty acylations in eukaryotic cells are N-myristoylation and S-acylation, the latter being more commonly referred to as palmitoylation. N-Myristoylation occurs exclusively on proteins synthesized on soluble ribosomes and provides substrates with an affinity for membranes. Palmitoylation modifies a wide range of substrates that includes both cytosolic and transmembrane proteins, its functions are diverse and in many cases not yet understood. Like myristoylation, palmitoylation promotes membrane-binding of cytosolic proteins, but it has also been implicated in protein targeting, trafficking, stability and activity. In addition, many palmitoylated proteins are insoluble in cold non-ionic detergent, and have therefore been proposed to localize to lipid rafts. The organization of receptors and signaling proteins into microdomains such as lipid rafts provides an attractive model for the initiation and propagation of T cell signaling, although many aspects of this are still poorly understood. This review will discuss the current evidence for the involvement of acylations in the localizations and functions of T cell signaling proteins.  相似文献   

8.
TNF signaling: early events and phosphorylation   总被引:1,自引:0,他引:1  
Tumor necrosis factor-alpha (TNF) is a major mediator of apoptosis as well as immunity and inflammation. Inappropriate production of TNF or sustained activation of TNF signaling has been implicated in the pathogenesis of a wide spectrum of human diseases, including cancer, osteoporosis, sepsis, diabetes, and autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. TNF binds to two specific receptors, TNF-receptor type I (TNF-R1, CD120a, p55/60) and TNF-receptor type II (TNF-R2, CD120b, p75/80). Signaling through TNF-R1 is extremely complex, leading to both cell death and survival signals. Many findings suggest an important role of phosphorylation of the TNF-R1 by number of protein kinases. Role of TNF-R2 phosphorylation on its signaling properties is understood less than TNF-R1. Other cellular substrates as TRADD adaptor protein, TRAF protein family and RIP kinases are reviewed in relation to TNF receptor-mediated apoptosis or survival pathways and regulation of their actions by phosphorylation.  相似文献   

9.
T cell receptor (TCR) ligation (signal one) in the presence of co-stimulation (signal two) results in downstream signals that increase protein production enabling naïve T cells to fully activate and gain effector function. Enhanced production of proteins by a cell requires an increase in endoplasmic reticulum (ER) chaperone expression, which is accomplished through activation of a cellular mechanism known as the ER stress response. The ER stress response is initiated during the cascade of events that occur for the activation of many cells; however, this process has not been comprehensively studied for T cell function. In this study, we used primary T cells and mice circulating TCR transgenic CD8+ T cells to investigate ER chaperone expression in which TCR signaling was initiated in the presence or absence of co-stimulation. In the presence of both signals, in vitro and in vivo analyses demonstrated induction of the ER stress response, as evidenced by elevated expression of GRP78 and other ER chaperones. Unexpectedly, ER chaperones were also increased in T cells exposed only to signal one, a treatment known to cause T cells to enter the ‘nonresponsive’ states of anergy and tolerance. Treatment of T cells with an inhibitor to protein kinase C (PKC), a serine/threonine protein kinase found downstream of TCR signaling, indicated PKC is involved in the induction of the ER stress response during the T cell activation process, thus revealing a previously unknown role for this signaling protein in T cells. Collectively, these data suggest that induction of the ER stress response through PKC signaling is an important component for the preparation of a T cell response to antigen.  相似文献   

10.
Regulatory NK cells suppress antigen-specific T cell responses   总被引:1,自引:0,他引:1  
The immune system has a variety of regulatory/suppressive processes, which are decisive for the development of a healthy or an allergic immune response to allergens. NK1 and NK2 subsets have been demonstrated to display counterregulatory and provocative roles in immune responses, similar to Th1 and Th2 cells. T regulatory cells suppressing both Th1 and Th2 responses have been the focus of intensive research during the last decade. In this study, we aimed to investigate regulatory NK cells in humans, by characterization of NK cell subsets according to their IL-10 secretion property. Freshly purified IL-10-secreting NK cells expressed up to 40-fold increase in IL-10, but not in the FoxP3 and TGF-beta mRNAs. PHA and IL-2 stimulation as well as vitamin D3/dexamethasone and anti-CD2/CD16 mAbs are demonstrated to induce IL-10 expression in NK cells. The effect of IL-10+ NK cells on Ag-specific T cell proliferation has been examined in bee venom major allergen, phospholipase A2- and purified protein derivative of Mycobecterium bovis-induced T cell proliferation. IL-10+ NK cells significantly suppressed both allergen/Ag-induced T cell proliferation and secretion of IL-13 and IFN-gamma, particularly due to secreted IL-10 as demonstrated by blocking of the IL-10 receptor. These results demonstrate that a distinct small fraction of NK cells display regulatory functions in humans.  相似文献   

11.
12.
Major histocompatibility complex (MHC) class II are expressed on most activated human lymphocytes. They direct antigen presentation events in dendritic cells and B cells (collectively called antigen presenting cells), but the role for MHC class II in human T cells is not well understood. To understand the role of surface MHC class II and to identify the molecules involved in signaling, we have defined the early activation sequence in T cells when MHC class II are engaged by a specific antibody. Specifically, we have characterized the involvement of phosphotyrosine kinases, phospholipase C (PLC), and Ca2+ mobilization. With the engagement by either whole anti-class II antibody or its Fab fragments, the enzymatic activity of p56lck and ZAP-70 increased, but there was no increase in p59fyn activity. In addition, the intracellular free Ca2+ increased, which was due to enhanced influx and not to the mobilization of intracytoplasmic Ca2+. These events did not require cross-linking because they were not significantly augmented by the addition of antispecies antibody. The coimmunoprecipitation of tyrosine phosphorylated PLC-γ1 with surface MHC class II suggested that PLC-γ1 could be recruited to MHC class II after engagement. These results show the complexities of the early signals transduced by the engagement of surface MHC class II on T cells. J. Cell. Biochem. 70:346–353, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Whitelock JM  Melrose J  Iozzo RV 《Biochemistry》2008,47(43):11174-11183
Perlecan is a ubiquitous pericellular proteoglycan ideally placed to mediate cell signaling events controlling migration, proliferation, and differentiation. Its control of growth factor signaling usually involves interactions with the heparan sulfate chains covalently coupled to the protein core's N-terminus. However, this modular protein core also binds with relatively high affinity to a number of growth factors and surface receptors, thereby stabilizing cell-matrix links. This review will focus on perlecan-growth factor interactions and describe recent advances in our understanding of this highly conserved proteoglycan during development, cancer growth, and angiogenesis. The pro-angiogenic capacities of perlecan that involve proliferative and migratory signals in response to bound growth factors will be explored, as well as the anti-angiogenic signals resulting from interactions between the C-terminal domain known as endorepellin and integrins that control adhesion of cells to the extracellular matrix. These two somewhat diametrically opposed roles will be discussed in light of new data emerging from various fields which converge on perlecan as a key regulator of cell growth and angiogenesis.  相似文献   

14.
15.
Technical limitations have prevented proteomic analyses of events occurring less than 30 s after signal initiation. We developed an automated, continuous quench-flow system allowing quantitative proteomic assessment of very early cellular signaling events (qPACE) with a time resolution of 1 s. Using this technique, we determined that autophosphorylation of the epidermal growth factor receptor occurs within 1 s after ligand stimulation and is followed rapidly by phosphorylation of the downstream signaling intermediates Src homologous and collagen-like protein and phospholipase C gamma 1.  相似文献   

16.
Suppression of T cell response is thought to be involved in the pathogenesis of visceral leishmaniasis (VL). Regulatory T cell (Treg) mediated immune-suppression is reported in animal models of Leishmania infection. However, their precise role among human patients still requires pathologic validation. The present study is aimed at understanding the frequency dynamics and function of Treg cells in the blood and bone marrow (BM) of VL patients. The study included 42 parasitologically confirmed patients, 17 healthy contact and 9 normal bone marrow specimens (NBM). We show i) the selective accumulation of Treg cells at one of the disease inflicted site(s), the BM, ii) their in vitro expansion in response to LD antigen and iii) persistence after successful chemotherapy. Results indicate that the Treg cells isolated from BM produces IL-10 and may inhibit T cell activation in IL-10 dependent manner. Moreover, we observed significantly higher levels of IL-10 among drug unresponsive patients, suggesting their critical role in suppression of immunity among VL patients. Our results suggest that IL-10 plays an important role in suppression of host immunity in human VL and possibly determines the efficacy of chemotherapy.  相似文献   

17.
18.
The aim of this study was to determine the percentage of CD45RO+ T cells in umbilical cord blood from neonates born at less than 37 weeks of gestation. Fifty-nine patients were enrolled in this study, including 49 with preterm and 10 with term deliveries. Preterm deliveries were divided into two categories; spontaneous (Group A, n = 31) and indicated (Group B, n = 18). Perinatal infection was categorized as C-CAM, H-CAM and neonatal infection. The percentage of CD45RO+ T cells in the umbilical cord was assessed using flow cytometry. IL-6 was measured using ELISA. In Group A, the percentage of CD45RO+ T cells and concentrations of IL-6 in patients with perinatal infection ( n = 18) were significantly higher than in those without perinatal infection ( n = 13). A significant correlation between percentage of CD45RO+ T cells and IL-6 concentrations was observed in the cord blood ( r = 0.62, P = 0.001). In Group B, pink–tinged amniotic fluid was observed in seven cases. In these cases, an increase in the percentage of CD45RO+ T cells (>10%) was noted. In the cases without perinatal infection, which included all those delivered at term ( n = 32), no correlation was observed between the percentage of CD45RO+ T cells and gestational age at delivery ( r =−0.139, P = 0.448). We concluded that a high percentage of CD45RO+ cord blood T cells is observed not only in perinatal infection, but also in the presence of abnormal perinatal events such as maternal bleeding in preterm gestation.  相似文献   

19.
We have derived T cell lines from mice inoculated with Gross leukemia virus, which appear to represent early T cell developmental stages and to reflect normal T cell development. These cell lines may provide a breakthrough in the study of T cell development as Abelson transformants have done for the study of B cell development. Analysis of the TCR gene expression in these cell lines reveals that the sequence of rearrangement and expression of each TCR gene is not strictly ordered. Expression of RNA for the TCR alpha and -beta genes appears to be coordinated with rearrangement at the alpha and beta loci. This is not the case for gamma gene expression. Availability of the homogeneous populations of cells represented in these cells lines allows for a more detailed molecular analysis of T cell development than was previously possible.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号