共查询到20条相似文献,搜索用时 15 毫秒
1.
Foggo Andrew Ozanne Claire M.P. Speight Martin R. Hambler Clive 《Plant Ecology》2001,153(1-2):347-359
The term edge effect can be used to encompass a wide range of both biotic and abiotic trends associated with boundaries between adjacent habitat types, whether these be natural or anthropogenic. Edge effects have been shown to represent significant forces affecting both faunal and floral assemblages in fragmented ecosystems. Specific studies of faunal assemblages associated with habitat edges have revealed trends at all levels of biological organisation from individuals to communities.Studies of edge effects on invertebrates in tropical forests have been relatively scarce. In this paper we review the nature and organisation of edge effects, focusing upon the processes which may lead to detrimental consequences for both forest canopy invertebrates and the forests themselves. We present as a case study data illustrating the very large amount of variance (over 50%) in community structure that is predicted simply by abiotic (microclimatic) variables in both a tropical and a temperate forest edge. We summarise major features of edge effects amongst forest invertebrates, stress the inter-relatedness of edge and canopy biology, and present an agenda for study of the canopy as an edge. 相似文献
2.
María Laura Moreno María Rosa Rossetti Natalia Pérez-Harguindeguy Graciela Rosa Valladares 《Ecological Research》2017,32(3):341-346
It is increasingly recognized that understanding the functional consequences of landscape change requires knowledge of aboveground and belowground processes and their interactions. For this reason, we provide novel information addressing insect herbivory and edge effects on litter quality and decomposition in fragmented subtropical dry forests in central Argentina. Using litter from Croton lachnostachyus (a common shrub species in the region) in a decomposition bed experiment, we evaluated whether litter quality (carbon and nitrogen content; carbon: nitrogen ratio) and decomposability (percentage of remaining dry weight) differ between litter from forest interiors or edges (origin) and with or without herbivory (damaged/undamaged leaves). We found that edge/interior origin had a strong effect on leaf litter quality (mainly on carbon content), while herbivory was associated with a smaller increase in nitrogen content. Herbivore damage increased leaf litter decomposability, but this effect was related to origin during the initial period of litter incubation. Overall, undamaged leaf litter from the forest edge showed the lowest decomposability, whereas damaged leaf litter decomposed at rates similar to those observed in litter from the forest interior. The interacting edge and herbivory effects on leaf litter quality and decomposability shown in our study are important because of the increasing dominance of forest edges in human-modified landscapes and the profound effect of leaf litter decomposition on nutrient cycling. 相似文献
3.
Trophic partitioning in tropical rain forest birds: insights from stable isotope analysis 总被引:8,自引:0,他引:8
Bird communities reach their highest taxonomic and trophic diversity in tropical rain forest, but the use of different foraging strategies to meet food requirements in such competitive environments is poorly understood. Conventional dietary analyses are poorly suited to investigate dietary patterns in complex systems. We used stable carbon (13C/12C) and nitrogen (15N/14N) isotope analysis of whole blood to examine avian trophic patterns and sources of diet in the tropical rain forest of Los Tuxtlas, Veracruz, Mexico. We used stable nitrogen isotope analysis to delineate trophic levels, and stable carbon isotope analysis to distinguish the relative contribution of C-3 and CAM/C-4 ultimate sources of proteins to diets. There was large inter- and intraspecific variation in whole blood 13C and 15N values in 23 species of birds. Stable nitrogen isotope analysis separated birds into several trophic levels, including species that obtained their dietary protein mostly from plants, insects or a combination of both food sources. Stable carbon isotope analysis showed that most birds fed on C3-based foods but Stub-tailed Spadebills (Platyrinchus cancrominus) included C-3- and C-4/CAM-specialist individuals. Our analyses provided insights into the nutritional contribution of plant and animal sources of protein and distinguish their photosynthetic origin over relatively long average time periods. 相似文献
4.
5.
Summary Oxygen isotope ratios were determined in leaf cellulose from two plant species at Barro Colorado (Republic of Panama) in 4 different plots, two of which were undergoing an irrigation treatment during the dry season. There is a gradient in 18O values of leaf cellulose from the understory to canopy leaves, reflecting the differences in relative humidity between these two levels of the forest. This gradient is most pronounced in irrigated plots. For irrigated plots there was a highly significant correlation between 18O and 13C values, which was not observed in control plots. This relationship can be explained by humidity controlling stomatal conductance. Low humidity affects 18O values of leaf water during photosynthesis, which isotopically labels cellulose during its synthesis. Low humidity also decreases stomatal conductance, which affects discrimination against carbon-13 by photosynthetic reactions, thus affecting the 13C values of photosynthates. WUE values calculated by using plant carbon and oxygen isotope ratios were similar to those observed with gas exchange measurements in other tropical and temperate area. Thus the concurrent analysis of carbon and oxygen isotope ratios of leaf material can potentially be useful for long term estimation of assimilation and evapotranspiration regimes of plants. 相似文献
6.
Aims Soil moisture content (SMC) influences establishment, survival and development of plant species and is considered as the most important limiting factor in tropical dry forest (TDF). In this study we attempt to establish the relationship between leaf attributes and of tree saplings in TDF and address the following questions: (i) how are the functional attributes of dominant tree saplings of TDF affected by seasonal changes in SMC at different habitats?, (ii) what is the relationship of functional attributes with each other?, (iii) how are the functional attributes and their plasticity affected by habitat conditions? and (iv) can the functional attributes in single or in combination predict the growth rate of tree saplings of TDF? The study was conducted on four sites (Hathinala, Gaighat, Harnakachar and Ranitali, listed in order of decreasing SMC) within the tropical dry deciduous forest in northern India.Methods We analysed eight leaf attributes, specific leaf area (SLA); leaf dry matter content (LDMC); leaf nitrogen concentration (leaf N); leaf phosphorus concentration (leaf P); chlorophyll concentration (Chl); mass-based photosynthetic rate (A mass); mass-based stomatal conductance (Gs mass); intrinsic water use efficiency (WUEi) and three growth attributes, relative diameter increment (RDI); relative height increment (RHI); relative growth rate (RGR) of the 10 dominant tree saplings (viz., Acacia catechu, Anogeissus latifolia, Boswellia serrata, Buchanania lanzan, Diospyros melanoxylon, Hardwickia binata, Lagerstroemia parviflora, Lannea coromandelica, Shorea robusta and Terminalia tomentosa) of a TDF and observed the effects of site, season and species for a period of 2 years. Saplings were selected in gradients of deciduousness. Step-wise multiple regression was performed to predict RDI, RHI and RGR from mean values of SMC and leaf attributes.Important findings All the 11 attributes were interrelated and differed significantly among the 10 saplings. Species response varied across sites and seasons. Across the SMC gradient, the attributes showed variable plasticity that differed across species. Among the 10 saplings, the highly deciduous Boswellia serrata showed the maximum plasticity in seven functional attributes. According to the step-wise multiple regressions, 65% variability in RDI and 67% variability in RGR were due to Gs mass, and for RHI, 61% variability was due to A mass. SMC and the other attributes, viz ., SLA, Chl, WUEi and LDMC in combination could contribute only for ~2–6% of the variability in RDI, RHI and RGR, which indicates that other traits/factors, not accounted in this study are also important in modulating the growth of tree saplings in TDFs. In conclusion, growth of the tree saplings in the tropical dry environment is determined by soil moisture, whereas the response of saplings of different tree species is modulated by alterations in key functional attributes such as SLA, Chl, WUEi and LDMC. 相似文献
7.
Jon J Sullivan 《Journal of Biogeography》2001,28(8):1051-1051
8.
Phosphorus cycling in a Mexican tropical dry forest ecosystem 总被引:6,自引:4,他引:6
Julio Campo Manuel Maass Víctor J. Jaramillo Angelina Martínez-Yrízar José Sarukhán 《Biogeochemistry》2001,53(2):161-179
The study was conducted in five contiguous small watersheds (12–28 ha) gauged for long-term ecosystem research. Five 80 × 30 m plots were used for the study. We quantified inputs from the atmosphere, dissolved and particulate-bound losses, throughfall and litterfall fluxes, standing crop litter and soil available P pools. Mean P input and output for a six-year period was 0.16 and 0.06 kgha–1yr–1, respectively. Phosphorus concentration increased as rainfall moved through the canopy. Annual P returns in litterfall (3.88 kg/ha) represented more than 90% of the total aboveground nutrient return to the forest floor. Phosphorus concentration in standing litter (0.08%) was lower than that in litterfall (0.11%). Phosphorus content in the litterfall was higher at Chamela than at other tropical dry forests. Mean residence time on the forest floor was 1.2 yr for P and 1.3 yr for organic matter. Together these results suggest that the forest at Chamela may not be limited by P availability and suggest a balance between P immobilization and uptake. Comparison of P losses in stream water with input rates from the atmosphere for the six-year period showed that inputs were higher than outputs. Balances calculated for a wet and a dry year indicated a small P accumulation in both years. 相似文献
9.
Nitrogen (N) oligotrophication is increasing globally across terrestrial ecosystems and manifested in decreasing nitrogen concentration ([N]) and changes in the stable nitrogen isotope composition (δ15N) of foliage. Heterogeneity in plant nitrogen sources makes it challenging to detect the effects of N oligotrophication even at a small catchment scale with complex topography. Understanding the spatial and temporal variation of foliar δ15N and [N] at such a scale is required to develop useful ecological indicators and monitoring methods to support catchment management with a potential N oligotrophication problem. This study examined spatial and high-resolution temporal variation of foliar δ15N and [N] and their influencing factors in ten trees grouped by Eucalyptus and Acacia in a native forest vegetation catchment. Over 16 sampling campaigns within a 12-month period, foliar δ15N and [N] increased in Eucalyptus but were constant in the N2-fixing Acacia. The higher foliar [N] and δ15N in Acacia reflected its N2-fixation ability. Topographic flow accumulation area (NDVI) explained 46% (77%) of spatial variation in dry-season Eucalyptus foliar δ15N ([N]). For Eucalyptus, foliar δ15N was higher at the downslope than the upslope locations, but no hillslope location differences were observed for foliar [N]. These results suggest that in the non-N2-fixing Eucalyptus, seasonal water stress related nitrogen availability may be reflected in foliar δ15N rather than foliar [N]. As such, foliar δ15N of non-N2-fixing plants potentially is a more sensitive indicator of seasonal or topographical N availability than foliar [N]. 相似文献
10.
Edge effects in a tropical montane forest mosaic: experimental tests of post-dispersal acorn removal
Forest edges created by scattered-patch clear-cutting have become common in tropical montane cloud forests in the highlands of Chiapas, Mexico. It was hypothesised that forest edges may influence regeneration of oak species, which are canopy dominants in these forests, by affecting the activities of small mammal species. Acorns of different oak species varying in germination timing were offered to predators and/or dispersers at different positions along replicated forest edges during 2 consecutive years. We investigated the effects of (1) edge type (hard and soft), (2) distance from the edge (0, 15, 30, 45 and 60 m inside forest fragments) and (3) oak species, on the rate of acorn removal mainly by small mammals. During a non-masting year, acorn removal was affected by the interaction of edge type and distance from the edge (P<0.05), with acorn removal being highest near hard edges compared to adjacent forest interiors. As predicted, acorn removal was greater along soft (100%) than along hard edges (82%), but this pattern was recorded only during the non-masting year. This study partly supports previous studies of rodents preferentially consuming acorns with early germination rather than acorns exhibiting dormancy, however these patterns may change with variation in acorn abundance. These results suggest that patch clear-cutting affects regeneration processes within forest fragments by influencing the activities of small mammals, but the nature of this effect also depends on acorn abundance and the characteristics of the forest edge created. 相似文献
11.
12.
Abstract. Studies of seedling demography and dynamics were carried out in a dry forest at Pinkwae, Ghana (rainfall 1100 mm). Seedlings of tree and liana species in permanent transects were tagged, identified, measured and recensused at bimonthly intervals. A total of 1931 seedlings in 53 species were followed over 14 censuses during a 2-yr period. Germination and mortality were seasonal in their distribution; mortality was highest in dry periods. Seedling density varied seasonally, with the highest densities in comparatively wet periods. Diversity of seedlings was low, corresponding to that of the adult assemblage. Survivorship of tagged seedlings was recorded during the study period. The cohort tagged at the first census, comprising 1033 individuals of mixed ages and species, lost 61.9% during a 24-month period. Many seedlings were found to be rather large at the initial post-germination stage, with strong root development. Vegetative reproduction by root suckers or epicormic shoots was quite common at the site, although the majority of regeneration was by seeds. The current seedling assemblage appears to be representative, in terms of composition and diversity, of the adult species assemblage at Pinkwae. 相似文献
13.
Forest under low rainfall (averaging 745 mm yr-1) on the Shai Hills in S.E. Ghana has redeveloped following cessation of farming in the 1890s. Forest stature is low, with a canopy at about 11 m, principally of three species, Diospyros abyssinica, D. mespiliformis and Millettia thonningii. Drypetes parvifolia and Vepris heterophylla are common understorey trees. Twelve species of woody liane were recorded. Species of thicket vegetation in the area were also present at low density. Most species are evergreen.Tree mortality averaged 2.3% yr-1 and exceeded recruitment (1.5% yr-1). Differences between species in mortality and recruitment were pronounced: canopy species showed a small decline in density; understorey species increased markedly and the thicket species declined. Seed production was very variable, but seedling establishment was very poor for all species. Seedling mortality was high (11% yr-1) especially for small seedlings. These population trends probably represent the latter stages of succession of forest regrowth after farming about 100 years ago.Compared with tropical rain forest, Shai Hills forest has similar relative tree diameter growth (1–3.5% yr-1), mortality and recruitment rates, and small-litter fall (5.52 t ha-1 yr-1).Shai Hills forest differs from rain forest by its short stature, relatively few (evergreen) tree species, poor regeneration from seed, high soil nutrient status and low rainfall. Similar forests have been reported in east Africa and in parts of New Guinea.Abbreviations dbh
diameter at breast height (1.3 m)
- gbh
girth at breast height
died May 1984 相似文献
14.
Root biomass of a dry deciduous tropical forest in Mexico 总被引:3,自引:0,他引:3
The deciduous tropical dry forest at Chamela (Jalisco, Mexico) occurs in a seasonal climate with eight rainless (November through June) and four wet months (700 mm annual precipitation). The forest reaches a mean height of 10 m. Tree density in the research area was 4700 trees per ha with a basal area at breast height of 23 m2 per ha. The above-and below-ground biomass of trees, shrubs, and lianas was 73.6 Mg ha–1 and 31 Mg ha–1, respectively. A root:shoot biomass ratio of 0.42 was calculated. Nearly two thirds of all roots occur in the 0–20 cm soil layer and 29% of all roots have a diameter of less than 5 mm. 相似文献
15.
Questions: How are leaf attributes and relative growth rate (RGR) of the dominant tree species of tropical deciduous forest (TDF) affected by seasonal changes in soil moisture content (SMC)? What is the relationship of functional attributes with each other? Can leaf attributes singly or in combination predict the growth rate of tree species of TDF? Location: Sonebhadra district of Uttar Pradesh, India. Methods: Eight leaf attributes, specific leaf area (SLA); leaf carbon concentration (LCC); leaf nitrogen concentration (LNC); leaf phosphorus concentration (LPC); chlorophyll concentration (Chl), mass‐based stomatal conductance (Gsmass); mass based photosynthetic rate (Amass); intrinsic water use efficiency (WUEi); and relative growth rate (RGR), of six dominant tree species of a dry tropical forest on four sites were analysed for species, site and season effects over a 2‐year period. Step‐wise multiple regression was performed for predicting RGR from mean values of SMC and leaf attributes. Path analysis was used to determine which leaf attributes influence RGR directly and which indirectly. Results: Species differed significantly in terms of all leaf attributes and RGR. The response of species varied across sites and seasons. The attributes were positively interrelated, except for WUEi, which was negatively related to all other attributes. The positive correlation was strongest between Gsmass and Amass and the negative correlation was strongest between Gsmass and WUEi. Differences in RGR due to site were not significant when soil moisture was controlled, but differences due to season remained significant. The attributes showed plasticity across moisture gradients, which differed among attributes and species. Gsmass was the most plastic attribute. Among the six species, Terminalia tomentosa exhibited the greatest plasticity in six functional attributes. In the step‐wise multiple regression, Amass, SLA and Chl among leaf attributes and SMC among environmental factors influenced the RGR of tree species. Path analysis indicated the importance of SLA, LNC, Chl and Amass in determining RGR. Conclusion: A mass, SMC, SLA and Chl in combination can be used to predict RGR but could explain only three‐quarters of the variability in RGR, indicating that other traits/factors, not studied here, are also important in modulating growth of tropical trees. RGR of tree species in the dry tropical environment is determined by soil moisture, whereas the response of mature trees of different species is modulated by alterations in key functional attributes such as SLA, LNC and Chl. 相似文献
16.
Leaf age effects on photosynthetic rate, transpiration rate and nitrogen content in a tropical dry forest 总被引:2,自引:0,他引:2
M. A. Sobrado 《Physiologia plantarum》1994,90(1):210-215
This study examines the effect of leaf age on photosynthesis, transpiration and nitrogen concentration in four deciduous (DC) and two evergreen (EG) species coexisting in a tropical dry forest of Venezuela. Leaf age was characterized on the basis of leaf chorophyll, nitrogen content, and construction and maintenance costs. The mean leaf area-based nitrogen concentration (N) in EG was about twice that in DC species. A leaf age effect was observed in both DC and EG species, with largest N concentration in mature leaves. Fractional leaf N allocation to chlorophyll was higher in the DC than in the EG species. Differences in the construction costs of leaf mass between the youngest and the oldest leaves averaged from 2.14 to 1.55 g glucose g−1 dry weight. Although variation in area-based leaf maintenance and construction costs between DC and EG species existed, they were, nevertheless, positively correlated. Individual data sets, for each species, indicated that leaf N and maximum rate of photosynthesis (Amax ) were linearly related. Nitrogen use efficiency (NUE) and water use efficiency (WUE) tended to be higher in mature leaves than in expanding and old leaves. Moreover, DC species always had higher NUE than EG species. Intercellular to ambient pressures of CO2 (Pi /Pa ) were related to WUE in a negative manner. Higher Pi /Pa values were observed in expanding and old leaves. Leaf age effect on photosynthesis was, therefore, due to greater decline of carbon fixation capacity by mesophyll tissue relative to the decline in stomatal conductance in youngest and oldest leaves. 相似文献
17.
The effects of individual tree species on species diversity in a tropical dry forest change throughout ontogeny 下载免费PDF全文
Understanding how diversity is maintained in species‐rich communities, such as tropical forests, remains a challenge in ecology. Recent work suggests that the controversy between competing theories could be better resolved by considering the spatial scale at which different processes rule community assembly. Here we use individual species–area relationships (ISAR) to evaluate the spatial organization of tree diversity around individuals of different species in a completely‐mapped tropical dry forest in south Ecuador. We test two hypotheses. First, stressful environmental conditions promote facilitative interactions that will generate spatial signals of accumulation of diversity around individual trees – contrary to what has been reported in humid tropical forests. Second, spatial signals will shift through ontogeny. As, as larger, older trees generate new microsite conditions that affect the recruitment of younger, smaller trees. We compute ISAR functions for adult trees, for young trees and a new crossed‐ISAR function measuring the accumulation of diversity of young trees around the old trees. We compare observed ISARs to the expectations of inhomogeneous Poisson (i.e. null) models controlling for the effects of environmental variation and habitat association on tree distribution. Although the prevalent response among adult trees was not different from null expectations, which means that the organization of diversity in this size class could be explained by environmental heterogeneity alone, most species accumulated more diversity than expected over short spatial scales in the small stem size class. Only two species accumulated significant diversity in the crossed‐ISARs. Our study indicates the role of facilitation in the organization of plant diversity in this dry forest, but that facilitation is limited to some key species acting on early life stages and accumulating diversity around them. Our results demonstrate the benefit of considering different life‐stages and crossed analyses to disentangle the processes affecting community assembly in tropical dry forests. 相似文献
18.
A simple albedo model is presented for a tropical dry deciduous forest. The model is based on point observations of the solar radiation, leaf cover of the vegetation, precipitation and air temperature from 1981 to 1988 in western Mexico. Four main periods were noted: leafing, leafed, leaf-fall and leafless. During the leafed period the albedo was almost constant (0.16) but increased slowly in the leaf-fall period, at a rate of 0.0008/day, until its maximal values in the leafless period (0.24). During the leafing and leafed periods, the albedo decrease was a hyperbolic function of precipitation at a rate of 7.9 albedo percentage/mm. Albedo showed a linear regression on leaf cover and decreased at a rate of 0.119 albedo percentage per leaf cover percentage. 相似文献
19.