首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The southern root-knot nematode, Meloidogyne incognita, is the most damaging pathogen of cotton in the United States, and both resistance and tolerance to M. incognita could be valuable management approaches. Our objectives were to evaluate advanced cotton breeding lines for resistance and tolerance to M. incognita and to determine if a relationship between resistance and tolerance exists. Reproduction of M. incognita was evaluated on 17 breeding lines, a susceptible control (Delta and Pine Land DP5415), and a resistant control (M-120) in two greenhouse trials with six replications in a randomized complete block design. Two-week-old seedlings were inoculated with 8,000 M. incognita eggs and assessed for egg production 8 weeks later. Reproduction on the resistant control was only 10% of that on the susceptible control. Eight breeding lines supported 45% to 57% less (P <= 0.05) nematode reproduction than the susceptible control, and none of them were as resistant as M-120. Yield was determined in 2001 and 2002 in fumigated (1,3-dichloropropene at 56 liters/ha) and nonfumigated plots in a strip-plot design with three replications in a field naturally infested with M. incognita. Yield suppression caused by nematode infection differed among genotypes (P ≤ 0.05 for genotype × fumigation interaction). Six genotypes in 2001 and nine in 2002 were tolerant to M. incognita based on no difference in yield between the fumigated and nonfumigated plots (P ≥ 0.10). However, only three genotypes had no significant yield suppression in both years, of which two also were resistant to M. incognita. Regression analysis indicated that yield suppression decreased linearly as nematode resistance increased.  相似文献   

2.
Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log10 (J2 + 1)/500 cm3 soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log10(J2 + 1)/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18°C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10°C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.  相似文献   

3.
A series of controlled-environment experiments were conducted to elucidate the effects of Meloidogyne incognita on host physiology and plant-water relations of two cotton (Gossypium hirsutum) cultivars that differed in their susceptibility to nematode infection. Inoculation of M. incognita-resistant cultivar Auburn 634 did not affect growth, stomatal resistance, or components of plant-water potential relative to uninoculated controls. However, nematode infection of the susceptible cultivar Stoneville 506 greatly suppressed water flow through intact roots. This inhibition exceeded 28% on a root-length basis and was similar to that observed as a consequence of severe water stress in a high evaporative demand environment. Nematodes did not affect the components of leaf water potential, stomatal resistance, transpiration, or leaf temperature. However, these factors were affected by the interaction of M. incognita and water stress. Our results indicate that M. incognita infection may alter host-plant water balance and may be a significant factor in early-season stress on cotton seedlings.  相似文献   

4.
The southern root-knot nematode (Meloidogyne incognita) is a major parasite of cotton in the U.S., and management tactics for this nematode attempt to minimize population levels. We compared three post-harvest practices for their ability to reduce nematode population levels in the field, thereby reducing initial nematode population for the next year's crop. The three practices tested were: 1) chemical defoliation before harvest plus cutting cotton stalks after harvest, 2) chemical defoliation plus applying a herbicide to kill plants prior to cutting the stalks, and 3) chemical defoliation without cutting stalks. Experiments were conducted in both the greenhouse and in the field. The greenhouse experiments demonstrated that M. incognita reproduction (measured as egg counts and root gall rating indices) was significantly greater when stalks were not cut. Cutting stalks plus applying herbicide to kill cotton roots did not significantly reduce nematode reproduction compared to cutting stalks alone. In field experiments, cutting stalks reduced egg populations and root galling compared to defoliation without stalk cutting. In a greenhouse bioassay which used soil from the field plots, plants grown in soil from the defoliation only treatment had greater root gall ratings and egg counts than in the stalk cutting plus herbicide treatment. Therefore, we conclude that cutting cotton stalks immediately after harvest effectively reduces M. incognita reproduction, and may lead to a lower initial population density of this nematode in the following year.  相似文献   

5.
A range of virulence levels was found in four populations of Meloidogyne incognita collected from cotton fields of the Punjab region of Pakistan. The most virulent population was associated with development of larger gall size, larger giant cell formation and improved success of juveniles transitioning into reproducing adults. The most virulent nematode population, MI-78, emanated from cotton cultivar NIAB-78. This cotton cultivar also possessed the greatest level of resistance to the three other nematode populations evaluated in this study. The source of plant resistance was not evident during root penetration by second-stage juveniles (J2), but became apparent as nematode feeding was attempted. Although one other cotton cultivar, CIM-506, could also be designated as showing a level of resistance, none of the other cultivars reduced any nematode stage by more than 75% of that achieved on the best host. These data provide an example of a single cotton cultivar that could have short-term utility in field settings. The data also provide insight for future cotton breeding programs.  相似文献   

6.
7.
Meloidogyne incognita causes more damage to cotton in the US than any other pathogen. The objective of this study was to document the cumulative effect of moderate resistance on M. incognita population density, root galling, and yield suppression in the southern United States on a moderately resistant cotton genotype grown continuously for three years. Cotton genotypes were Phytogen PH98-3196 (77% suppression of M. incognita), Acala NemX (85% suppression of M. incognita), and Delta and Pine Land DP458 B/R (susceptible standard, 0% suppression). Cotton was grown in fumigated and non-fumigated plots to measure yield loss. Each genotype and nematicide combination was planted in the same place for three years at two sites to document cumulative effects. In 2006, following three years of the different genotypes, all plots at one site were planted with susceptible cotton to document residual effects of planting resistant genotypes. Root galling and nematode population densities in the soil were significantly lower, and percentage yield suppression was numerically lower, when moderately resistant cotton was grown compared to the susceptible standard in both fields in all three years. Differences between susceptible and moderately resistant genotypes are established quickly (after only one season) and then either maintained at similar levels or slightly increased in subsequent years depending on initial nematode levels. However, when susceptible cotton was grown following three years of the moderately resistant genotypes, the nematode suppression provided by moderate resistance was undetectable by the end of the first season. Moderately resistant cotton genotypes are more beneficial than previously reported and should be pursued for nematode management. Rotation of moderately resistant and susceptible cotton could be used along with nematicides to manage root-knot nematodes in a continuous cotton cropping system and reduce selection pressure on the nematodes.  相似文献   

8.
Greenhouse tests were conducted to evaluate (i) the effect of Meloidogyne incognita infection in cotton on plant growth and physiology including the height-to-node ratio, chlorophyll content, dark-adapted quantum yield of photosystem II, and leaf area; and (ii) the extent to which moderate or high levels of resistance to M. incognita influenced these effects. Cultivars FiberMax 960 BR (susceptible to M. incognita) and Stoneville 5599 BR (moderately resistant) were tested together in three trials, and PD94042 (germplasm, susceptible) and 120R1B1 (breeding line genetically similar to PD94042, but highly resistant) were paired in two additional trials. Inoculation with M. incognita generally resulted in increases in root gall ratings and egg counts per gram of root compared with the noninoculated control, as well as reductions in plant dry weight, root weight, leaf area, boll number, and boll dry weight, thereby confirming that growth of our greenhouse-grown plants was reduced in the same ways that would be expected in field-grown plants. In all trials, M. incognita caused reductions in height-to-node ratios. Nematode infection consistently reduced the area under the height-to-node ratio curves for all genotypes, and these reductions were similar for resistant and susceptible genotypes (no significant genotype × inoculation interaction). Our study is the first to show that infection by M. incognita is associated with reduced chlorophyll content in cotton leaves, and the reduction in the resistant genotypes was similar to that in the susceptible genotypes (no interaction). The susceptible PD94042 tended to have increased leaf temperature compared with the genetically similar but highly resistant 120R1B1 (P < 0.08), likely attributable to increased water stress associated with M. incognita infection.  相似文献   

9.
It has been hypothesized Rotylenchulus reniformis (Rr) has a competitive advantage over Meloidogyne incognita (Mi) in the southeastern cotton production region of the United States. This study examines the reproduction and development of Meloidogyne incognita (Mi) and Rotylenchulus reniformis (Rr) in separate and concomitant infections on cotton. Under greenhouse conditions, cotton seedlings were inoculated simultaneously with juveniles (J2) of M. incognita and vermiform adults of R. reniformis in the following ratios (Mi:Rr): 0:0, 100:0, 75:25, 50:50, 25:75, and 0:100. Soil populations of M. incognita and R. reniformis were recorded at 3, 6, 9, 14, 19, 25, 35, 45, and 60 days after inoculations. At each date, samples were taken to determine the life stage of development, number of egg masses, eggs per egg mass, galls, and giant cells or syncytia produced by the nematodes. Meloidogyne incognita and R. reniformis were capable of initially inhibiting each other when the inoculum ratio of one species was higher than the other. In concomitant infections, M. incognita was susceptible to the antagonistic effect of R. reniformis. Rotylenchulus reniformis affected hatching of M. incognita eggs, delayed secondary infection of M. incognita J2, reduced the number of egg masses produced by M. incognita, and reduced J2 of M. incognita 60 days after inoculations. In contrast, M. incognita reduced R. reniformis soil populations only when its proportion in the inoculum ratio was higher than that of R. reniformis. Meloidogyne incognita reduced egg masses produced by R. reniformis, but not production of eggs and secondary infection.  相似文献   

10.
The reproductive potential of Meloidogyne graminicola was compared with that of M. incognita on Trifolium species in greenhouse studies. Twenty-five Trifolium plant introductions, cultivars, or populations representing 23 species were evaluated for nematode reproduction and root galling 45 days after inoculation with 3,000 eggs of M. graminicola or M. incognita. Root galling and egg production by the two root-knot nematode species was similar on most of the Trifolium species. In a separate study, the effect of initial population densities (Pi) of M. graminicola and M. incognita on the growth of white clover (T. repens) was determined. Reproductive and pathogenic capabilities of M. graminicola and M. incognita on Trifolium spp. were similar. Pi levels of both root-knot nematode species as low as 125 eggs per 10-cm-d pots severely galled white clover plants after 90 days. Meloidogyne graminicola has the potential to be a major pest of Trifolium species in the southeastern United States.  相似文献   

11.
The influence of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices (Gi) and superphosphate (P) on penetration, development, and reproduction of Meloidogyne incognita (Mi) was studied on the Mi-susceptible cotton cultivar Stoneville 213 in an environmental chamber at 28 C. Plants were inoculated with Mi eggs at planting or after 28 days and destructively sampled 7, 14, 21, and 28 days after nematode inoculation. Mi penetration after 7 days was similar in all treatments at either inoculation interval. At 28 days, however, nematode numbers were least in mycorrhizal root systems and greatest in root systems grown with supplemental P. The rate of development of second-stage juveniles to ovipositing females was unaffected by Gi or P when Mi was added at planting, but was delayed in mycorrhizal root systems when Mi was added 28 days after planting. Nematode reproduction was lower in mycorrhizal than in nonmycorrhizal root systems at both Mi inoculation intervals. Nematode reproduction was stimulated by P when Mi was added at planting, but was similar to reproduction in the low P nonmycorrhizal treatment when Mi was added 28 days after planting. Eggs per female were increased by P fertility when Mi was added at planting.  相似文献   

12.
Field experiments in 1992 and 1994 were conducted to determine the effect of Rotylenchulus reniformis, reniform nematode, on lint yield and fiber quality of 10 experimental breeding lines of cotton (Gossypium hirsutum) in untreated plots or plots fumigated with 1,3-dichloropropene. Controls were La. RN 1032, a germplasm line possessing some resistance to R. reniformis, and Stoneville 453, a cultivar that is susceptible to reniform nematode. Several breeding lines produced greater lint yields than Stoneville 453 or La. RN 1032 in both fumigated and untreated plots. Average lint yield suppression due to R. reniformis for six of the 10 breeding lines was less than half of the 52% yield reduction sustained by Stoneville 453. In growth chamber experiments, R. reniformis multiplication factors for La. RN 1032 and breeding lines N222-1-91, N320-2-91, and N419-1-91 were significantly lower than on Deltapine 16 and Stoneville 453 at 6 weeks after inoculation. R. reniformis populations increased by more than 50-fold on all entries within 10 weeks. In growth chambers, the breeding lines N220-1-92, N222-1-91, and N320-2-91 were resistant to Meloidoglyne incognita race 3; multiplication factors were ≤1.0 at both 6 weeks and 10 weeks after inoculation compared with 25.8 and 26.5 for Deltapine 16 at 6 and 10 weeks after inoculation, respectively, and 9.1 and 2.6 for Stoneville 453. Thus, the results indicate that significant advances have been made in developing improved cotton germplasm lines with the potential to produce higher yields in soils infested with R. reniformis or M. incogaita. In addition to good yield potential, germplasm lines N222-1-91 and N320-2-91 appear to possess low levels of resistance to R. reniformis and a high level of resistance to M. incognita. This germplasm combines high yield potential with significant levels of resistance to both R. reniformis and M. incognita.  相似文献   

13.
Cotton farmers in Missouri commonly apply a single rate of aldicarb throughout the field at planting to protect their crop from Meloidogyne incognita, even though these nematodes are spatially aggregated. Our purpose was to determine the effect of site-specific application of aldicarb on cotton production in a field infested with these nematodes in 1997 and 1998. Cotton yields were collected from sites not treated with aldicarb (control), sites receiving aldicarb at the standard recommended rate of 0.58 kg a.i./ha, and sites receiving specific aldicarb rates based on the soil population densities of second-stage infective juveniles of root-knot nematode. Yields for the standard rate and site-specific rate treatments were similar and greater (P ≤ 0.05) than the control treatment. Less aldicarb was used for the site-specific than the uniform-rate treatment each year—46% less in 1997 and 61% less in 1998. Costs associated with the site-specific treatment were very high compared with the uniform-rate treatment due to a greater number of soil samples analyzed for nematodes. Site-specific application of aldicarb for root-knot nematode management in cotton may pose fewer environmental risks than the uniform-rate application of aldicarb.  相似文献   

14.
Winter survival of Meloidogyne incognita in six soil types (Fuquay sand, Norfolk loamy sand, Portsmouth loamy sand, muck, Cecil sandy clay loam, and Cecil sandy clay) was determined in microplots at one location from November 1981 to May 1982 and from November 1982 to March 1983. Survival, based on second-stage juveniles (J2) of M. incognita, from November 1981 until May 1982 ranged from 1% in the muck soil to 6% in a Cecil sandy clay loam, but survival rates were much higher the next year following a winter with higher average temperatures. Survival rates of J2 from November to March ranged from 20 to 40% the first winter and from 38 to 87% the second. Soil type did not have a striking effect on the overwintering capabilities ofM. incognita. There were no differences between clay and sand soils, whereas survival of J2 in the muck tended to be lower than in the mineral soils.  相似文献   

15.
The effects of Meloidogyne incognita and Thielaviopsis basicola on the growth of cotton (Gossypium hirsutum) and the effects of T. basicola on M. incognita populations were evaluated in a 2-year study. Microplots were infested with M. incognita, T. basicola, or a combination of M. incognita and T. basicola. Uninfested plots served as controls both years. Seedling survival was decreased by the M. incognita + T. basicola treatment compared to the control. Meloidogyne incognita alone and M. incognita + T. basicola reduced plant height-to-node ratio for seedlings in both years. Seed cotton yield was reduced, and the length of time required for boll maturation was lengthened by M. incognita + T. basicola in 1994 and M. incognita both alone and with T. basicola in 1995. Position of the first sympodial node on the main stem was increased by M. incognita in both years and was higher for plants treated with M. incognita + T. basicola in 1995 in comparison to the control. The number of sympodial branches with bolls in the first and second fruiting position and the percentage of bolls retained in the second position were reduced both years by M. incognita + T. basicola compared to either the control or T. basicola alone. Orthogonal contrasts indicated that effects on height-to-node ratio, number of days to first cracked boll, and yield were significantly different for combined pathogen inoculations than with either pathogen alone. Meloidogyne incognita eggs at harvest were reduced by T. basicola in 1994 and 1995 compared to M. incognita alone. The study demonstrated a significant interaction between M. incognita and T. basicola on cotton that impacted the survival and development of cotton and the reproduction of M. incognita on cotton.  相似文献   

16.
The level of resistance to root-knot nematode, Meloidogyne incognita, in NemX, a new cultivar of the Acala-type upland cotton, was evaluated in relation to four resistant breeding lines (N6072, N8577, N901, and N903) and four susceptible cultivars (Maxxa, SJ2, Royale, and Prema). In growth pouch tests, an average of only 4 nematode egg masses was produced on roots of NemX or the resistant lines, compared to a significantly higher average of 21 on the susceptible cultivars. In pot tests, the nematode reproduction factor (RF = Pf/Pi) in NemX and the resistant lines averaged 0.7, compared to a significantly higher average of 10 on the susceptible cultivars. Root galling in NemX or other resistant cotton averaged 15%, compared to 74% on the susceptible cultivars, in either pot or field tests. In plots with low levels of nematode infestation (Pi ≤ 150 second-stage juveniles [J2]/500 g soil), lint yield of NemX averaged 1,370 kg/ha and was less than the yield of susceptible Maxxa (1,450 k g /h a ). However, in plots with medium or high levels of nematode infestation (Pi = 151-300 or >300 J2/500 g soil, respectively), yields of NemX decreased only slightly and averaged 1,300 or 1,050 kg/ha, respectively, whereas yields of Maxxa were severely reduced to 590 or 503 kg/ha, respectively. Fusarium wih symptoms were observed on both NemX and Maxxa, and percent occurrence increased with increasing preplant nematode density. In plots with the highest nematode densities, 22% of NemX and 65% of Maxxa plants were wilted. NemX was highly effective against five M. incognita isolates and moderately effective against a sixth isolate that had been exposed to resistant cotton over several seasons. These results showed that NemX is as resistant to M. incognita as the four breeding lines, and much more resistant than the tested susceptible cultivars of cotton.  相似文献   

17.
The effects of Meloidogyne incognita on the growth and water relations of cotton were evaluated in a 2-year field study. Microplots containing methyl bromide-fumigated fine sandy loam soil were infested with the nematode and planted to cotton (Gossypium hirsutum L.). Treatments included addition of nematodes alone, addition of nematodes plus the insecticide-nematicide aldicarb (1.7 kg/ha), and an untreated control. Meloidogyne incognita population densities reached high levels in both treatments where nematodes were included. Root galling, plant height at harvest, and seed cotton yield were decreased by nematode infection. In older plants (89 days after planting [DAP]), leaf transpiration rates and stomatal conductance were reduced, and leaf temperature was increased by nematode infection. Nematode infection did not affect (P = 0.05) leaf water potential in either young or older plants but lowered the osmotic potential. The maximum rate and cumulative amount of water flowing through intact plants during a 24-hour period were lower, on both a whole-plant and per-unit-leaf-area basis, in infected plants than in control plants. Application of aldicarb moderated some of the nematode effects but did not eliminate them.  相似文献   

18.
The efficacy of abamectin as a seed treatment for control of Meloidogyne incognita on cotton was evaluated in greenhouse, microplot, and field trials in 2002 and 2003. Treatments ranging from 0 to 100 g abamectin/100 kg seed were evaluated. In greenhouse tests 35 d after planting (DAP), plants from seed treated with abamectin were taller than plants from nontreated seed, and root galling severity and nematode reproduction were lower where treated seed were used. The number of second stage juveniles that had entered the roots of plants from seed treated with 100 g abamectin/kg seed was lower during the first 14 DAP than with nontreated seed. In microplots tests, seed treatment with abamectin and soil application of aldicarb at 840 g/kg of soil reduced the number of juveniles penetrating seedling roots during the first 14 DAP compared to the nontreated seedlings. In field plots, population densities of M. incognita were lower 14 DAP in plots that received seed treated with abamectin at 100 g/kg seed than where aldicarb (5.6 kg/ha) was applied at planting. Population densities were comparable for all treatments, including the nontreated controls, at both 21 DAP and harvest. Root galling severity did not differ among treatments at harvest.  相似文献   

19.
The root-knot nematode Meloidogyne incognita is a damaging pest of cotton (Gossypium hirsutum) worldwide. A major gene (rkn1) conferring resistance to M. incognita was previously identified on linkage group A03 in G. hirsutum cv. Acala NemX. To determine the patterns of segregation and phenotypic expression of rkn1, F1, F2, F2:3, BC1F1 and F2:7 recombinant inbred lines (RIL) from intraspecific crosses between Acala NemX and a closely related susceptible cultivar Acala SJ-2 were inoculated in greenhouse tests with M. incognita race 3. The resistance phenotype was determined by the extent of nematode-induced root galling and nematode egg production on roots. Suppression of root galling and egg production was highly correlated among individuals in all tests. Root galling and egg production on heterozygous plants did not differ from the susceptible parent phenotype 125 d or more after inoculation, but were slightly suppressed with shorter screening (60 d), indicating that rkn1 behaved as a recessive gene or an incompletely recessive gene, depending on the screening condition. In the RIL, rkn1 segregated in an expected 1 resistant: 1 susceptible ratio for a major resistance gene. However, within the resistant class, 21 out of 34 RIL were more resistant than the resistant parent Acala NemX, indicating transgressive segregation. These results suggest that rkn1-based resistance in G. hirsutum can be enhanced in progenies of crosses with susceptible genotypes. Allelism tests and molecular genetic analysis are needed to determine the relationship of rkn1 to other M. incognita resistance sources in cotton.  相似文献   

20.
The effects of chicken litter on Meloidogyne incognita in cotton, Gossypium hirsutum cv. DPL50 were determined in field microplots. Litters (manure and pine-shaving bedding) from a research facility and a commercial broiler house were used. Treatments consisted of 0.25%, 0.5%, and 1% litter by dry weight of soil for each kind of litter. Three control treatments consisted of soil not amended with litter, with and without nematodes, and one treatment to which mineral fertilizer was added at a nitrogen rate equivalent to that of the 0.5% litter rate, with nematodes. Microplots were inoculated at planting with 900 eggs/100 cm³ soil in 1993 and 1,000 eggs/100 cm³ soil in 1994. At 92 and 184 days after planting, nematode population densities decreased linearly with increasing rates of litter. Nematode numbers at midseason were larger in plots treated with mineral fertilizer than in plots treated with a rate of litter equivalent to the 0.5% rate. Fungal and bacterial population densities fluctuated throughout the growing season. Bacterial numbers had a positive linear relationship, with increasing rates of litter only in October 1993; however, significant positive relationships were observed throughout the 1994 growing season. In 1994, nematode population density at 92 days after planting decreased linearly with increasing bacterial numbers 30 days after planting. No other significant relationships between nematode densities and microbial densities were observed. Fungi and bacteria isolated from the litter and litter-amended soil were identified. Fungal genera isolated included Acremonium, Aspergillus, Eurotium, Paecilomyces, Petriella, and Scopulariopsis, whereas bacteria genera included Arthrobacter, Bacillus, and Pseudomonus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号