首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental evidence suggests that magnesium plays a role in the pathophysiological sequelae of brain injury. The present study examined the variation of blood ionized and total magnesium, as well as potassium, sodium, and ionized calcium, after experimental fluid percussion brain injury in rats. Blood ionized magnesium concentration significantly declined from 0.45 +/- 0.02 to 0.32 +/- 0.02 mM by 30 min postinjury and stayed depressed for the 24-h study period in vehicle-treated rats. Blood total magnesium concentration was 0.59 +/- 0.01 mM and remained stable over time in brain-injured vehicle-treated animals. When magnesium chloride (125 micromol/rat) was administered 1 h postinjury, ionized magnesium levels were restored by 2 h postinjury and remained at normal values up to 24 h following brain trauma. Magnesium treatment also significantly reduced posttraumatic neuromotor impairments 1 and 2 weeks after the insult, but failed to attenuate spatial learning deficits. A significant positive and linear correlation could be established between ionized magnesium levels measured 24 h postinjury and neuromotor outcome at 1 and 2 weeks. We conclude that acute ionized magnesium measurement may be a predictor of long-term neurobehavioral outcome following head injury and that delayed administration of magnesium chloride can restore blood magnesium concentration and attenuate neurological motor deficits in brain-injured rats.  相似文献   

2.
The present study examined the formation of regional cerebral edema in adult rats subjected to lateral (parasagittal) experimental fluid-percussion brain injury. Animals receiving fluid-percussion brain injury of moderate severity over the left parietal cortex were assayed for brain water content at 6 h, 24 h, and 2, 3, 5, and 7 days post injury. Regional sodium and potassium concentrations were measured in a separate group of animals at 10 min, 1 h, 6 h, and 24 h following fluid-percussion injury. Injured parietal cortex demonstrated significant edema, beginning at 6 h post injury (p less than 0.05) and persisting up to 5 days post injury. In the hippocampus ipsilateral to the site of cortical injury, significant edema occurred as early as 1 h post injury (p less than 0.05), with resolution of water accumulation beginning at 3 days. Sodium concentrations significantly increased in both injured cortex (1 h post injury, p less than 0.05) and injured hippocampus (10 min post injury, p less than 0.05). Potassium concentrations fell significantly 1 h post injury within the injured cortex (p less than 0.05), whereas significant decreases were not observed until 24 h post injury within the injured hippocampus. Cation alterations persisted throughout the 24-h post injury period. These results demonstrate that regional brain edema and cation deregulation occur in rats subjected to lateral fluid-percussion brain injury and that these changes may persist for a prolonged period after brain injury.  相似文献   

3.
Abstract: The recently developed controlled cortical impact model of brain injury in rats may be an excellent tool by which to attempt to understand the neurochemical mechanisms mediating the pathophysiology of traumatic brain injury. In this study, rats were subjected to lateral controlled cortical impact brain injury of low grade severity; their brains were frozen in situ at various times after injury to measure regional levels of lactate, high energy phosphates, and norepinephrine. Tissue lactate concentration in the injury site left cortex was increased in injured animals by sixfold at 30 min and twofold at 2.5 h and 24 h after injury ( p < 0.05). At all postinjury times, lactate concentration was also increased in injured animals by about twofold in the cortex and hippocampus adjacent to the injury site ( p < 0.05). No significant changes occurred in the levels of ATP and phosphocreatine in most of the brain regions of injured animals. However, in the primary site of injury (left cortex), phosphocreatine concentration was decreased by 40% in injured animals at 30 min after injury ( p < 0.05). The norepinephrine concentration was decreased in the injury site left cortex of injured animals by 38% at 30 min, 29% at 2.5 h, and 30% at 24 h after injury ( p < 0.05). The level of norepinephrine was also reduced by ∼20% in the cortex adjacent to the injury site in injured animals. The present results suggest that controlled cortical impact brain injury produces disorder in the neuronal oxidative and norepinephrine metabolism.  相似文献   

4.
Abstract: Although activation of brain catecholaminergic systems has been implicated in the cerebrovascular and metabolic changes during subarachnoid hemorrhage, cerebral ischemia, cortical ablation, and cortical freeze lesions, little is known of the response of regional brain catecholamine systems to traumatic brain injury. The present study was designed to characterize the temporal changes in concentrations of norepinephrine (NE), dopamine (DA), and epinephrine (E) in discrete brain regions following experimental fluid-percussion traumatic brain injury in rats. Anesthetized rats were subjected to fluid-percussion brain injury of moderate severity (2.2–2.3 atm) and killed at 1 h, 6 h, 24 h, 1 week, and 2 weeks postinjury (n = 6 per timepoint). Control animals (surgery and anesthesia without injury) were killed at identical timepoints (n = 6 per timepoint). Tissue concentrations of NE, DA, and E were evaluated using HPLC. Following brain injury, an acute decrease was observed in DA concentrations in the injured cortex ( p < 0.05) at 1 h postinjury, which persisted up to 2 weeks postinjury. Striatal concentrations of DA were significantly increased ( p < 0.05) only at 6 h postinjury. Hypothalamic concentrations of DA and NE increased significantly beginning at 1 h postinjury ( p < 0.05 and p < 0.05, respectively) and persisted up to 24 h for DA ( p < 0.05) and 1 week ( p < 0.05) for NE. These data suggest that acute alterations occur in regional concentrations of brain catecholamines following brain trauma, which may persist for prolonged periods postinjury.  相似文献   

5.
Regional activities of phosphoinositide-specific phospholipase C (PLC) were measured after lateral fluid percussion (FP) brain injury in rats. The activity of PLC on phosphatidylinositol 4,5-bisphosphate (PIP2) in the rat cortex required calcium, and at 45 M concentration it increased PLC activity by about ten-fold. The activity of PLC was significantly increased in the cytosol fraction in the injured (left) cortex (IC) at 5 min, 30 min and 120 min after brain injury. However, in the same site, increases were observed in the membrane fraction only at 5 min after brain injury. In both the contralateral (right) cortex (CC) and ipsilateral hippocampus (IH), the activity of PLC was increased in the cytosol only at 5 min after brain injury. These results suggest that increased activity of PLC may contribute to increases in levels of cellular diacylglycerol and inositol trisphosphate in the IC (the greatest site of injury), and to a smaller extent in the IH and CC, after lateral FP brain injury. It is likely that this increased PLC activity is caused by alteration in either the levels or activities of one or more of its isozymes (PLC, PLC, and PLC) after FP brain injury.  相似文献   

6.
目的:研究血管紧张素I受体(AT1)抑制剂厄贝沙坦对侧位液压脑损伤模型大鼠神经细胞凋亡的影响。方法:利用改良的侧位液压损伤装置建立大鼠颅脑损伤(TBI)模型,术前及术后给予厄贝沙坦治疗,用激光多普勒测定局部脑区血流(r CBF)的变化,术前及术后1、3、5和7d利用神经功能评分评估大鼠神经功能损伤,利用TUNEL染色检测大鼠脑细胞凋亡情况,利用Western Blot检测大鼠脑组织损伤周围区域活性caspase 3的表达。结果:与正常值相比,TBI手术后损伤局部脑区r CBF下降至30%(P0.05),神经功能评分显著降低(P0.05),损伤区周围脑组织TUNEL阳性细胞明显增多,活性caspase 3的表达显著增加(P0.05)。厄贝沙坦治疗组大鼠r CBF显著高于单纯TBI组,梗死区面积显著缩小,神经功能得到明显改善,损伤区周围脑组织TUNEL阳性细胞和活性caspase 3表达下降(P均0.05)。结论:厄贝沙坦预处理能够通过抑制凋亡发挥神经保护作用。  相似文献   

7.
Abstract: To understand the effects of arecoline administration on the muscarinic cholinergic signaling pathway, rats were injected with arecoline, 10 mg/kg i.p., and the carbachol-stimulated phosphoinositide breakdown in rat brain cortical slices was examined. In vivo administration of arecoline resulted in inhibition of carbachol-stimulated phosphoinositide turnover in rat brain cortical slices. Arecoline was a partial agonist with peak effects of 30% of the maximum as obtained with carbachol. Coaddition of arecoline inhibited the carbachol-stimulated phosphoinositide breakdown. Pretreatment of rat brain cortical slices with arecoline in vitro resulted in a dose-dependent inhibition of carbachol-stimulated [3H]inositol monophosphate accumulation. The inhibition occurred rapidly, with half-maximal inhibition occurring at 15 min and maximal inhibition achieved within 60 min. The inhibition of phosphoinositide breakdown was recovered 1 h after arecoline was removed. When synaptoneurosomes were used for the ligand binding studies, arecoline pretreatment was found to have decreased the maximal ligand binding ( B max) without inducing any marked change in binding affinity ( K D). The influence could be recovered by incubating the synaptoneurosomes in the absence of arecoline for 2 h. Taken together, these data suggest that the underlying mechanism by which phosphoinositide turnover is inhibited is arecoline-induced receptor sequestration.  相似文献   

8.
目的:探讨液压脑损伤后突触素在皮质区表达的动态变化.方法:应用液压脑损伤复制脑损伤动物模型,应用免疫组织化学和计算机图像分析技术定量分析皮质受损区突触素表达的动态变化.结果:突触素在皮质受伤区表达呈现两次高峰:分别为3~12h和15~30d,90d表达接近正常.结论:突触素在皮质受伤区第2次表达增高可能与脑的结构和功能恢复有关.急性期表达增高则可能与脑的直接损伤有关.  相似文献   

9.
The present study was undertaken to define effects of thyrotropin-releasing hormone (TRH) on formation of cyclic AMP (cAMP) and inositol phosphates (IPs) in rat brain regions. The brain of male Wistar rats was dissected into seven discrete regions, and each region was sliced. The slices were incubated in Krebs-Henseleit glucose buffer containing varying doses of TRH. TRH caused a significant and consistent increase in cAMP level, but not in formation of IPs, in the hypothalamus, striatum, and midbrain. TRH stimulated formation of IPs in the cerebellum, where the tripeptide did not change the cAMP level. In contrast, formation of neither cAMP nor IPs was affected by TRH in the cortex, hippocampus, or pons-medulla. These data suggest that TRH possesses two distinct types of brain intracellular signaling systems, which vary with brain regions.  相似文献   

10.
刘垚炜  刘绍明 《生物磁学》2011,(6):1075-1077,1047
目的:研究大鼠脑损伤后非损伤区域缺氧诱导因子(hypoxia-inducible factor-1α,HIF-1α)与乳酸的表达变化。方法:取雄性SD大鼠36只,体重200-300g,参照统计学随机数字表将大鼠随机平均分为正常对照组(6只)、假手术组(6只)、造模组(24只),3组,造模组分四个时间点12h、72h、1w、2w处死动物(每时间点6只)。使用立体定位仪和液压打击装置,靶向打击大脑中动脉,造大鼠脑外伤模型。采用免疫组织化学法检测脑外伤后不同时间点损伤临近区域脑组织中HIF-1α蛋白表达及乳酸含量的变化。结果:正常组和假手术组脑组织神经细胞HIF-1α表达和乳酸含量无明显变化,而模型组损伤临近区域HIF-1α的表达及乳酸含量的变化规律基本一致,12 h时增多,72h时达到高峰,1w表达下降至2w时恢复正常。造模组12h、72h、1w3个亚组与正常对照组比较差异具有统计学意义p〈0.01,造模组2w亚组与正常对照组比较差异无统计学意义p〉0.01。结论:脑外伤后非损伤区域也有缺血、缺氧的改变,可能与脑外伤后的脑萎缩有相关性。  相似文献   

11.
目的:研究大鼠脑损伤后非损伤区域缺氧诱导因子(hypoxia-inducible factor-1α,HIF-1α)与乳酸的表达变化。方法:取雄性SD大鼠36只,体重200-300g,参照统计学随机数字表将大鼠随机平均分为正常对照组(6只)、假手术组(6只)、造模组(24只),3组,造模组分四个时间点12h、72h、1w、2w处死动物(每时间点6只)。使用立体定位仪和液压打击装置,靶向打击大脑中动脉,造大鼠脑外伤模型。采用免疫组织化学法检测脑外伤后不同时间点损伤临近区域脑组织中HIF-1α蛋白表达及乳酸含量的变化。结果:正常组和假手术组脑组织神经细胞HIF-1α表达和乳酸含量无明显变化,而模型组损伤临近区域HIF-1α的表达及乳酸含量的变化规律基本一致,12 h时增多,72h时达到高峰,1w表达下降至2w时恢复正常。造模组12h、72h、1w3个亚组与正常对照组比较差异具有统计学意义p<0.01,造模组2w亚组与正常对照组比较差异无统计学意义p>0.01。结论:脑外伤后非损伤区域也有缺血、缺氧的改变,可能与脑外伤后的脑萎缩有相关性。  相似文献   

12.
Abstract: S -Adenosyl- l -methionine decarboxylase (SAMdc) and l -ornithine decarboxylase (ODC) are major enzymes regulating polyamine synthesis. Following ischemia, putrescine content increases as a result of post-traumatic activation of ODC and inhibition of SAMdc. These alterations are thought to mediate edema and cell death. The purpose of this study was to quantify SAMdc activity and edema in the brain following controlled cortical impact injury. Anesthetized adult male rats underwent a right parietal craniectomy and were subjected to cortical impact injury. Tissues were obtained from three bilateral regions: parietal cortex, motor area (CPm); parietal cortex, somatosensory area (CPs); and the pyriform cortex (CPF). SAMdc activity was determined in the postmitochondrial fraction from homogenates of fresh, unfrozen tissues by measuring the decarboxylation of S -adenosyl- l -[ carboxyl -14C]methionine. Basal SAMdc activity was determined in unoperated rats, and regional differences were noted: Activity was lower in the CPF than in the CPm and CPs. SAMdc activity decreased to the greatest extent in the ipsilateral CPm (impact site) from 1 to 72 h following traumatic brain injury. Significant edema was found in the ipsilateral CPm 1, 8, 16, 24, and 48 h after injury. Decreased SAMdc activity impairs the conversion of putrescine to polyamines and may contribute to delayed pathological changes in the brain after traumatic injury.  相似文献   

13.
Fluid percussion injury (FPI) is a widely used experimental model for studying traumatic brain injury (TBI). However, little is known about how the brain mechanically responds to fluid impacts and how the mechanical pressures/strains of the brain correlate to subsequent brain damage for rodents during FPI. Hence, we developed a numerical approach to simulate FPI experiments on rats and characterize rat brain pressure/strain responses at a high resolution. A previous rat brain model was improved with a new hexahedral elements-based skull model and a new cerebrospinal fluid (CSF) layer. We validated the numerical model against experimentally measured pressures from FPI. Our results indicated that brain tissues under FPI experienced high pressures, which were slightly lower (10–20%) than input saline pressure. Interestingly, FPI was a mixed focus- and diffuse-type injury model with highest strains (12%) being concentrated in the ipsilateral cortex under the fluid-impact site and diffuse strains (5–10%) being spread to the entire brain, which was different from controlled cortical impact in which high strains decreased gradually away from the impact site.  相似文献   

14.
Hydrolysis of Inositol Trisphosphate by Purified Rat Brain Myelin   总被引:1,自引:0,他引:1  
Abstract: Highly purified rat brain myelin was found to hydrolyze inositol 1,4,5-trisphosphate to inositol 1.4-bisphosphate, but subsequent hydrolysis of the latter, characteristic of whole brainstem, did not occur. Inositol 1,4,5-trisphosphate 5-phosphatase in myelin was ∼ 33% of the level in microsomes and 127% that of the cytosolic fraction from brainstem. The myelin and microsomal enzymes had similar properties, as follows: activation by saponin, requirement for Mg2+ and similar Kact (0.16 and 0.13 mM), Km (8.7 ± 2.5 and 7.0 ± 1.0 μM), and pH optima (6.6-6.8). Vmax values were 11.2 ± 1.0 and 26.3 ± 2.0 nmol/mg/min for myelin and microsomes, respectively. A possible role for this enzyme in phosphoinositide-mediated signal transduction within myelin and its subcompartments is discussed.  相似文献   

15.
The in vitro and ex vivo effects of lithium on muscarinic cholinergic inositol phospholipid hydrolysis and muscarinic cholinergic inhibition of dopamine D1-receptor-stimulated cyclic AMP formation were examined in rat brain slices. Following chronic lithium feeding, carbachol-stimulated inositol phosphate accumulation was reduced ex vivo in slices of cerebral cortex but not in striatal slices. Lithium (1 mM) in vitro had no direct effect on dopamine D1-receptor-stimulated cyclic AMP formation, but enhanced the inhibitory effect of carbachol on the D1 response, in striatal slices, and this was not significantly altered by prior lithium feeding. Lithium therefore has effects on two discrete muscarinic responses in rat brain which are apparently maintained after chronic exposure to the ion and might be relevant to its antimanic actions.  相似文献   

16.
Free fatty acids (FFA) and lactic acid are markers of secondary cellular injury following traumatic brain injury (TBI). We previously showed that animals fed a creatine (Cr)-enriched diet are afforded neuroprotection following TBI. To further characterize the neuroprotective Cr diet, we studied neurochemical changes in cortex and hippocampus following a moderate injury. Adult rats were fed either a control or Cr-supplemented diet (0.5%, 1%) for 2 weeks before TBI. At 30 min or 6 h after injury, tissue was processed for quantitative analysis of neurochemical changes. Both lactate and FFA were significantly increased in all tissues ipsilateral to the injury. Cr-fed animals had significantly lower levels, although the levels were elevated compared to sham controls. Animals fed a 1% Cr-diet were afforded greater neuroprotection than animals fed a 0.5% Cr diet. These results support the idea that a Cr-enriched diet can provide substantial neuroprotection in part by suppressing secondary brain injury.  相似文献   

17.
The excitatory amino acid agonists kainate, N-methyl-D-aspartate (NMDA), and quisqualate inhibited ligand-stimulated phosphoinositide hydrolysis in rat cortical slices. The NMDA channel blocker MK-801 antagonized the inhibition by NMDA but had no effect on the inhibition due to kainate or quisqualate. The antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the effects of quisqualate and kainate but not the effect of NMDA. These data indicate that activation of the NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and kainate types of ionotropic receptors has the same effect. In membranes prepared from cortical slices, there was no inhibition of carbachol-stimulated phosphoinositidase C activity by excitatory amino acids, suggesting that excitatory amino acids indirectly affect carbachol-stimulated phosphoinositide hydrolysis. The inhibition by excitatory amino acids of carbachol-stimulated phosphoinositide breakdown was dependent on extracellular Mg2+ and was abolished by procedures that increase intracellular Ca2+. Veratridine inhibition of carbachol-stimulated phosphoinositide hydrolysis was reversed by ouabain but not by other procedures that increase intracellular Ca2+. In contrast to excitatory amino acids, veratridine potentiated carbachol-stimulated phosphoinositide breakdown in the presence of 10 mM extracellular Mg2+. These data suggest that excitatory amino acids inhibit carbachol-stimulated phosphoinositide breakdown in rat cortex by lowering intracellular Ca2+ through a mechanism dependent on extracellular Mg2+.  相似文献   

18.
目的:探讨急性颅脑损伤后血凝检查的临床意义。方法:对85例急性颅脑损伤患者伤后不同时间分别测定六项血凝指标,进行比较分析。结果:损伤24小时后血凝指标检测结果与伤后1周、3周比较有显著差异,有统计学意义(P<0.05)。结论:急性颅脑损伤后的血凝检测结果异常,可对疾病的诊断和治疗提供理论依据。  相似文献   

19.
目的:探讨急性颅脑损伤后血凝检查的临床意义。方法:对85例急性颅脑损伤患者伤后不同时间分别测定六项血凝指标,进行比较分析。结果:损伤24小时后血凝指标检测结果与伤后1周、3周比较有显著差异,有统计学意义(P〈0.05)。结论:急性颅脑损伤后的血凝检测结果异常,可对疾病的诊断和治疗提供理论依据。  相似文献   

20.
DNA fragmentation, an early event in neuronal death following traumatic brain injury, may be triggered by the 40-kDa subunit of DNA fragmentation factor (DFF40). DFF40 is typically bound to the 45-kDa subunit of DFF (DFF45), and activation of DFF40 may occur as a result of caspase-3-mediated cleavage of DFF45 into 30- and 11-kDa fragments. In this study, the intracellular distribution of DFF45 and DFF40 was examined following lateral fluid percussion brain injury of moderate severity (2.4-2.7 atm) in male Sprague-Dawley rats. In the cytosolic fraction (S1) of the injured cortex at 2 and 24 h postinjury, significant decreases in the intensities of DFF45-like proteins at 45- and 32-kDa bands and a concomitant increase in the 11-kDa bands were observed (p < 0.05 vs. uninjured controls). A significant decrease in the intensities of the 32-kDa band in the nuclear (P1) fraction of the injured cortex was observed at 30 min and 2 h postinjury (p < 0.01). Concomitantly, a decrease in DFF40 was observed in the cortical S1 fraction at 2 and 24 h (p < 0.05) and in the P1 fraction at 30 min and 2 h postinjury (p < 0.01). In the hippocampus, DFF45 decreased at 30 min in the P1 and 2 h in the S1 fraction (p < 0.05) and recovered by 24 h postinjury, whereas DFF40 was significantly decreased in the S1 and increased in the P1 fraction at both 2 and 24 h (p < 0.01), which indicated a translocation of DFF40 from cytosol to nucleus. These data are the first to demonstrate that changes in DFF proteins occur after brain trauma and suggest that these changes may play a role in apoptotic cell death via caspase-3-DFF45/DFF40-DNA cleavage observed following traumatic brain injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号