首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smirnova I  Kasho V  Kaback HR 《Biochemistry》2011,50(45):9684-9693
Crystal structures of the lactose permease of Escherichia coli (LacY) reveal 12, mostly irregular transmembrane α-helices surrounding a large cavity open to the cytoplasm and a tightly sealed periplasmic side (inward-facing conformation) with the sugar-binding site at the apex of the cavity and inaccessible from the periplasm. However, LacY is highly dynamic, and binding of a galactopyranoside causes closing of the inward-facing cavity with opening of a complementary outward-facing cavity. Therefore, the coupled, electrogenic translocation of a sugar and a proton across the cytoplasmic membrane via LacY very likely involves a global conformational change that allows alternating access of sugar- and H(+)-binding sites to either side of the membrane. Here the various biochemical and biophysical approaches that provide strong support for the alternating access mechanism are reviewed. Evidence is also presented indicating that opening of the periplasmic cavity is probably the limiting step for binding and perhaps transport.  相似文献   

2.
More than 20% of the genes sequenced thus far appear to encode polytopic transmembrane proteins involved in a multitude of critical functions, particularly energy and signal transduction. Many are important with regard to human disease (e.g., depression, diabetes, drug resistance), and many drugs are targeted to membrane transport proteins (e.g., fluoxetine and omeprazole). However, the number of crystal structures of membrane proteins, especially ion-coupled transporters, is very limited. Recently, an inward-facing conformer of the Escherichia coli lactose permease (LacY), a paradigm for the Major Facilitator Superfamily, which contains almost 4000 members, was solved at about 3.5 A in collaboration with Jeff Abramson and So Iwata at Imperial College London. This intensively studied membrane transport protein is composed of two pseudo-symmetrical 6-helix bundles with a large internal cavity containing bound sugar and open to the cytoplasm only. Based on the structure and a large body of biochemical and biophysical evidence, a mechanism is proposed in which the binding site is alternatively accessible to either side of the membrane.  相似文献   

3.
The lactose permease of Escherichia coli (LacY) is a highly dynamic membrane transport protein, while the Cys154 → Gly mutant is crippled conformationally. The mutant binds sugar with high affinity, but catalyzes very little translocation across the membrane. In order to further investigate the defect in the mutant, fluorescent maleimides were used to examine the accessibility/reactivity of single-Cys LacY in right-side-out membrane vesicles. As shown previously, sugar binding induces an increase in reactivity of single-Cys replacements in the tightly packed periplasmic domain of wild-type LacY, while decreased reactivity is observed on the cytoplasmic side. Thus, the predominant population of wild-type LacY in the membrane is in an inward-facing conformation in the absence of sugar, sugar binding induces opening of a hydrophilic pathway on the periplasmic side, and the sugar-binding site is alternatively accessible to either side of the membrane. In striking contrast, the accessibility/reactivity of periplasmic Cys replacements in the Cys154 → Gly background is very high in the absence of sugar, and sugar binding has little or no effect. The observations indicate that an open hydrophilic pathway is present on the periplasmic side of the Cys154 → Gly mutant and that this pathway is unaffected by ligand binding, a conclusion consistent with findings obtained from single-molecule fluorescence and double electron-electron resonance.  相似文献   

4.
Cation-coupled active transport is an essential cellular process found ubiquitously in all living organisms. Here, we present two novel ligand-free X-ray structures of the lactose permease (LacY) of Escherichia coli determined at acidic and neutral pH, and propose a model for the mechanism of coupling between lactose and H+ translocation. No sugar-binding site is observed in the absence of ligand, and deprotonation of the key residue Glu269 is associated with ligand binding. Thus, substrate induces formation of the sugar-binding site, as well as the initial step in H+ transduction.  相似文献   

5.
Previous N-ethylmaleimide-labeling studies show that ligand binding increases the reactivity of single-Cys mutants located predominantly on the periplasmic side of LacY and decreases reactivity of mutants located for the most part of the cytoplasmic side. Thus, sugar binding appears to induce opening of a periplasmic pathway with closing of the cytoplasmic cavity resulting in alternative access of the sugar-binding site to either side of the membrane. Here we describe the use of a fluorescent alkylating reagent that reproduces the previous observations with respect to sugar binding. We then show that generation of an H+ electrochemical gradient (Δμ¯H+, interior negative) increases the reactivity of single-Cys mutants on the periplasmic side of the sugar-binding site and in the putative hydrophilic pathway. The results suggest that Δμ¯H+, like sugar, acts to increase the probability of opening on the periplasmic side of LacY.  相似文献   

6.
Lactose permease of Escherichia coli (LacY) is highly dynamic, and sugar binding causes closing of a large inward-facing cavity with opening of a wide outward-facing hydrophilic cavity. Therefore, lactose/H(+) symport via LacY very likely involves a global conformational change that allows alternating access of single sugar- and H(+)-binding sites to either side of the membrane. Here, in honor of Stephan H. White's seventieth birthday, we review in camera the various biochemical/biophysical approaches that provide experimental evidence for the alternating access mechanism.  相似文献   

7.
Escherichia coli lactose permease (LacY) transports sugar across the inner membrane of the bacterium using the proton motive force to accumulate sugar in the cytosol. We have probed lactose conduction across LacY using steered molecular dynamics, permitting us to follow molecular and energetic details of lactose interaction with the lumen of LacY during its permeation. Lactose induces a widening of the narrowest parts of the channel during permeation, the widening being largest within the periplasmic half-channel. During permeation, the water-filled lumen of LacY only partially hydrates lactose, forcing it to interact with channel lining residues. Lactose forms a multitude of direct sugar-channel hydrogen bonds, predominantly with residues of the flexible N-domain, which is known to contribute a major part of LacY's affinity for lactose. In the periplasmic half-channel lactose predominantly interacts with hydrophobic channel lining residues, whereas in the cytoplasmic half-channel key protein-substrate interactions are mediated by ionic residues. A major energy barrier against transport is found within a tight segment of the periplasmic half-channel where sugar hydration is minimal and protein-sugar interaction maximal. Upon unbinding from the binding pocket, lactose undergoes a rotation to permeate either half-channel with its long axis aligned parallel to the channel axis. The results hint at the possibility of a transport mechanism, in which lactose permeates LacY through a narrow periplasmic half-channel and a wide cytoplasmic half-channel, the opening of which is controlled by changes in protonation states of key protein side groups.  相似文献   

8.
Wang X  Bogdanov M  Dowhan W 《The EMBO journal》2002,21(21):5673-5681
In Escherichia coli, the major cytoplasmic domain (C6) of the polytopic membrane protein lactose permease (LacY) is exposed to the opposite side of the membrane from a neighboring periplasmic domain (P7). However, these domains are both exposed on the periplasmic side of the membrane in a mutant of E.coli lacking phosphatidylethanolamine (PE) wherein LacY only mediates facilitated transport. When purified LacY was reconstituted into liposomes lacking PE or phosphatidylcholine (PC), C6 and P7 were on the same side of the bilayer. In liposomes containing PE or PC, C6 and P7 were on opposite sides of the bilayer. Only the presence of PE in the liposomes restored active transport function of LacY as opposed to restoration of only facilitated transport function in the absence of PE. These results were the same for LacY purified from PE-containing or PE-lacking cells, and are consistent with the topology and function of LacY assembled in vivo. Therefore, irrespective of the mechanism of membrane insertion, the subdomain topological orientation and function of LacY are determined primarily by membrane phospholipid composition.  相似文献   

9.
10.
To address the role of phospholipids in the topological organization of polytopic membrane proteins, the function and assembly of lactose permease (LacY) was studied in mutants of Escherichia coli lacking phosphatidylethanolamine (PE). PE is required for the proper conformation and active transport function of LacY. The N-terminal half of LacY assembled in PE-lacking cells adopts an inverted topology in which normally non-translocated domains are translocated and vice versa. Post-assembly synthesis of PE triggers a conformational change, resulting in a lipid-dependent recovery of normal conformation and topology of at least one LacY subdomain accompanied by restoration of active transport. These results demonstrate that membrane protein topology once attained can be changed in a reversible manner in response to alterations in phospholipid composition, and may be subject to post-assembly proofreading to correct misfolded structures.  相似文献   

11.
We have examined the substrate selectivity of the melibiose permease (MelY) from Enterobacter cloacae in comparison with that of the lactose permease (LacY) from Escherichia coli. Both proteins catalyze active transport of lactose or melibiose with comparable affinity and capacity. However, MelY does not transport the analogue methyl-1-thio-β,d-galactopyranoside (TMG), which is a very efficient substrate in LacY. We show that MelY binds TMG and conserves Cys148 (helix V) as a TMG binding residue but fails to transport this ligand. Based on homology modeling, organization of the putative MelY sugar binding site is the same as that in LacY and residues irreplaceable for the symport mechanism are conserved. Moreover, only 15% of the residues where a single-Cys mutant is inactivated by site-directed alkylation differ in MelY. Using site-directed mutagenesis at these positions and engineered cross-homolog chimeras, we show that Val367, at the periplasmic end of transmembrane helix XI, contributes in defining the substrate selectivity profile. Replacement of Val367 with the MelY residue (Ala) leads to impairment of TMG uptake. Exchanging domains N6 and C6 between LacY and MelY also leads to impairment of TMG uptake. TMG uptake activity is restored by the re-introduction of a Val367 in the background of chimera N6(LacY)-C6(MelY). Much less prominent effects are found with the same mutants and chimeras for the transport of lactose or melibiose.  相似文献   

12.
Building a three-dimensional model of the sucrose permease of Escherichia coli (CscB) with the X-ray crystal structure lactose permease (LacY) as template reveals a similar overall fold for CscB. Moreover, despite only 28% sequence identity and a marked difference in substrate specificity, the structural organization of the residues involved in sugar-binding and H(+) translocation is conserved in CscB. Functional analyses of mutants in the homologous key residues provide strong evidence that they play a similar critical role in the mechanisms of CscB and LacY.  相似文献   

13.
Ermolova N  Madhvani RV  Kaback HR 《Biochemistry》2006,45(13):4182-4189
To complete a study on site-directed alkylation of Cys replacements in the lactose permease of Escherichia coli (LacY), the reactivity of single-Cys mutants in helices I, III, VI, and XI, as well as some of the adjoining loops, with N-[14C]ethylmaleimide (NEM) or methanethiosulfonate ethylsulfonate (MTSES) was studied in right-side-out membrane vesicles. With the exception of several positions in the middle of helix I, which either face the bilayer or are in close proximity to other helices, the remaining Cys replacements react with the membrane-permeant alkylating agent NEM. In helices III and XI, most Cys replacements are also alkylated by NEM except for positions that face the bilayer. The reactivity of Cys replacements in helix VI is noticeably lower and only 45% of the replacements label. Binding of sugar leads to significant increases in the reactivity of Cys residues that are located primarily at the same level as the sugar-binding site or in the periplasmic half of each helix. Remarkably, studies with small, impermeant MTSES show that single-Cys replacements in the cytoplasmic portions of helices I and XI, which line the inward-facing cavity, are accessible to solvent from the periplasmic surface of the membrane. Moreover, addition of ligand results in increased accessibility of Cys residues to the aqueous milieu in the periplasmic region of the helices, which may reflect structural rearrangements leading to opening of an outward-facing cavity. The findings are consistent with the X-ray structure of LacY and with the alternating access model [Abramson, J., Smirnova, I., et al. (2003) Science 301, 610-615].  相似文献   

14.
Certain prokaryotic transport proteins similar to the lactose permease of Escherichia coli (LacY) have been identified by BLAST searches from available genomic databanks. These proteins exhibit conservation of amino acid residues that participate in sugar binding and H(+) translocation in LacY. Homology threading of prokaryotic transporters based on the X-ray structure of LacY (PDB ID: 1PV7) and sequence similarities reveals a common overall fold for sugar transporters belonging to the Major Facilitator Superfamily (MFS) and suggest new targets for study. Evolution-based searches for sequence similarities also identify eukaryotic proteins bearing striking resemblance to MFS sugar transporters. Like LacY, the eukaryotic proteins are predicted to have 12 transmembrane domains (TMDs), and many of the irreplaceable residues for sugar binding and H(+) translocation in LacY appear to be largely conserved. The overall size of the eukaryotic homologs is about twice that of prokaryotic permeases with longer N and C termini and loops between TMDs III-IV and VI-VII. The human gene encoding protein FLJ20160 consists of six exons located on more than 60,000 bp of DNA sequences and requires splicing to produce mature mRNA. Cellular localization predictions suggest membrane insertion with possible proteolysis at the N terminus, and expression studies with the human protein FJL20160 demonstrate membrane insertion in both E.coli and Pichia pastoris. Widespread expression of the eukaryotic sugar transport candidates suggests an important role in cellular metabolism, particularly in brain and tumors. Homology is observed in the TMDs of both the eukaryotic and prokaryotic proteins that contain residues involved in sugar binding and H(+) translocation in LacY.  相似文献   

15.
X-ray crystal structures of LacY (lactose permease of Escherichia coli) exhibit a large cytoplasmic cavity containing the residues involved in sugar binding and H+ translocation at the apex and a tightly packed side facing the periplasm. However, biochemical and biophysical evidence provide a strong indication that a hydrophilic pathway opens on the external surface of LacY with closing of the cytoplasmic side upon sugar binding. Thus, an alternating-access mechanism in which sugar- and H+-binding sites at the approximate middle of the molecule are alternatively exposed to either side of the membrane is likely to underlie LacY-catalyzed sugar/H+ symport. To further investigate periplasmic opening, we replaced paired residues on the tightly packed periplasmic side of LacY with Cys, and the effect of cross-linking was studied by testing the accessibility/reactivity of Cys148 with the elongated (∼ 29 Å), impermeant hydrophilic reagent maleimide-PEG2-biotin. When the paired-Cys mutant Ile40 → Cys/Asn245 → Cys containing native Cys148 is oxidized to form a disulfide bond, the reactivity of Cys148 is markedly inhibited. Moreover, the reactivity of Cys148 in this mutant increases with the length of the cross-linking agent. In contrast, maleimide-PEG2-biotin reactivity of Cys148 is unaffected by oxidation of two other paired-Cys mutants at the mouth of the periplasmic cavity. The data indicate that residues Ile40 and Asn245 play a primary role in gating the periplasmic cavity and provide further support for the alternating-access model.  相似文献   

16.
To determine how the lipid environment affects membrane protein structure and function, strains of Escherichia coli were developed in which normal phospholipid composition can be altered or foreign lipids can be introduced. The properties of LacY (lactose permease) were investigated as a function of lipid environment. Assembly of LacY in membranes lacking PE (phosphatidylethanolamine) results in misorientation of the N-terminal six-TM (transmembrane domain) helical bundle with loss of energy-dependent uphill transport and retention of energy-independent downhill transport. Post-assembly introduction of PE results in nearly native orientation of TMs and restoration of uphill transport. Foreign lipids with no net charge can substitute for PE in supporting native LacY topology, but restoration of uphill transport is dependent on native topology and the proper folding of a solvent-exposed domain. Increasing the positive charge density of the cytoplasmically exposed surface of LacY counters TM misorientation in the absence of neutral lipids, demonstrating that charge interactions between these domains and the surface of the membrane bilayer are determinants of TM orientation. Therefore membrane protein organization or reorganization is determined either during initial assembly or post-insertionally through direct interactions between the protein and the lipid environment, which affects the topogenic potency of opposing charged residues as topological signals independent of the translocon.  相似文献   

17.
Biochemical and structural work has revealed the importance of phospholipids in biogenesis, folding and functional modulation of membrane proteins. Therefore, the nature of protein-phospholipid interaction is critical to understand such processes. Here, we have studied the interaction of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) mixtures with the lactose permease (LacY), the sugar/H+ symporter from Escherichia coli and a well characterized membrane transport protein. FRET measurements between single-W151/C154G LacY reconstituted in a lipid mixture composed of POPE and POPG at different molar ratios and pyrene-labeled PE or PG revealed a different phospholipid distribution between the annular region of LacY and the bulk lipid phase. Results also showed that both PE and PG can be part of the annular region, being PE the predominant when the PE:PG molar ratio mimics the membrane of E. coli. Furthermore, changes in the thermotropic behavior of phospholipids located in this annular region confirm that the interaction between LacY and PE is stronger than that of LacY and PG. Since PE is a proton donor, the results obtained here are discussed in the context of the transport mechanism of LacY.  相似文献   

18.
H Vogel  J K Wright    F Jhnig 《The EMBO journal》1985,4(13A):3625-3631
The secondary structure of the lactose permease of Escherichia coli reconstituted in lipid membranes was determined by Raman spectroscopy. The alpha-helix content is approximately 70%, the beta-strand content below 10% and beta-turns contribute 15%. About 1/3 of the residues in alpha-helices and most other residues are exposed to water. Employing a method for structural prediction which accounts for amphipathic helices, 10 membrane-spanning helices are predicted which are either hydrophobic or amphipathic. They are expected to form an outer ring of helices in the membrane. The interior of the ring would be made of residues which are predominantly hydrophilic and, evoking the analogy to sugar-binding proteins, suited to provide the sugar binding site.  相似文献   

19.
A key to obtaining an X-ray structure of the lactose permease of Escherichia coli (LacY) (Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., and Iwata, S. (2003) Science 301, 549-716) was the use of a mutant in which Cys154 (helix V) is replaced with Gly. LacY containing this mutation strongly favors an inward-facing conformation, which binds ligand with high affinity, but catalyzes little transport and exhibits few if any of the ligand-dependent conformational changes observed with wild-type LacY. The X-ray structure demonstrates that helix V crosses helix I in the approximate middle of the membrane in such a manner that Cys154 lies close to Gly24 (helix I). Therefore, it seems likely that replacing Cys154 with Gly may lead to tighter packing between helices I and V, thereby resulting in the phenotype observed. Consistently, replacement of Gly24 with Cys in the C154G mutant rescues significant transport activity, and the mutant exhibits properties similar to wild-type LacY with respect to substrate binding and thermostability. However, the only other replacements that rescue transport to any extent whatsoever are Val and Asp, both of which are much less effective than Cys. The results suggest that, although helix packing probably plays an important role with respect to the properties of the C154G mutant, the ability of Cys at position 24 to rescue transport activity of C154G is more complicated than simple replacement of bulk between positions 24 and 154. Rather, activity is dependent on more subtle interactions between the helices, and mutations that disrupt interactions between helix IV and loop 6-7 or between helices II and IV also rescue transport in the C154G mutant.  相似文献   

20.
Sugihara J  Smirnova I  Kasho V  Kaback HR 《Biochemistry》2011,50(51):11009-11014
The sucrose permease (CscB) and lactose permease (LacY) of Escherichia coli belong to the oligosaccharide/H(+) symporter subfamily of the major facilitator superfamily, and both catalyze sugar/H(+) symport across the cytoplasmic membrane. Thus far, there is no common substrate for the two permeases; CscB transports sucrose, and LacY is highly specific for galactopyranosides. Determinants for CscB sugar specificity are unclear, but the structural organization of key residues involved in sugar binding appears to be similar in CscB and LacY. In this study, several sugars containing galactopyranosyl, glucopyranosyl, or fructofuranosyl moieties were tested for transport with cells overexpressing either CscB or LacY. CscB recognizes not only sucrose but also fructose and lactulose, but glucopyranosides are not transported and do not inhibit sucrose transport. The findings indicate that CscB exhibits practically no specificity with respect to the glucopyranosyl moiety of sucrose. Inhibition of sucrose transport by CscB tested with various fructofuranosides suggests that the C(3)-OH group of the fructofuranosyl ring may be important for recognition by CscB. Lactulose is readily transported by LacY, where specificity is directed toward the galactopyranosyl ring, and the affinity of LacY for lactulose is similar to that observed for lactose. The studies demonstrate that the substrate specificity of CscB is directed toward the fructofuranosyl moiety of the substrate, while the specificity of LacY is directed toward the galactopyranosyl moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号