首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The cellular mechanisms regulating intestinal proliferation anddifferentiation remain largely undefined. Previously, we showed anearly induction of the cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1 in Caco-2 cells, ahuman colon cancer line that spontaneously differentiates into a smallbowel phenotype. The purpose of our present study was to assess thetiming of cell cycle arrest in relation to differentiation in Caco-2cells and to examine the mechanisms responsible for CDK inactivation.Caco-2 cells undergo a relativeG1/S block and cease toproliferate at day3 postconfluency; an increase in theactivity of terminally differentiated brush-border enzymes (sucrase andalkaline phosphatase) was noted at day6 postconfluency. Cell cycle block wasassociated with suppression of both CDK2 and CDK4 activities, which areimportant for G1/S progression.Treatment of the CDK immune complexes with the detergent deoxycholate(DOC) resulted in restoration of CDK2, but not CDK4, activity atday 3 postconfluency, suggesting the presence of inhibitory protein(s)binding to the cyclin/CDK2 complex at this time point. An increasedbinding of p21Waf1/Cip1 to CDK2complexes at day3 postconfluency was noted, suggesting a potential role for p21Waf1/Cip1in CDK2 inactivation; however, immunodepletion ofp21Waf1/Cip1 from Caco-2 proteinextracts demonstrated thatp21Waf1/Cip1 is only partiallyresponsible for CDK2 suppression atday 3 postconfluency. A decrease in the cyclin E/CDK2 complex appears tocontribute to the CDK2 inactivation noted atdays6 and12 postconfluency. Taken together, ourresults suggest that multiple mechanisms contribute to CDK suppressionduring Caco-2 cell differentiation. Inhibition of CDK2 and CDK4 leadsto G1 arrest and inhibition ofproliferation that precede Caco-2 cell differentiation.

  相似文献   

2.
JunD protects cells from p53-dependent senescence and apoptosis   总被引:11,自引:0,他引:11  
  相似文献   

3.
Intestinal epithelium undergoes a rapid self-renewal process characterized by the proliferation of the crypt cells, their differentiation into mature enterocytes as they migrate up to the villi, followed by their shedding as they become senescent villus enterocytes. The exact mechanism that regulates the intestinal epithelium renewal process is not well understood, but the differential expression of regulatory genes along the crypt-villus axis may have a role. Heme oxygenase-1 (HO-1) is involved in endothelial cell cycle progression, but its role in the intestinal epithelial cell turnover has not been explored. With its effects on cell proliferation and its differential expression along the crypt-villus axis, HO-1 may play a role in the intestinal epithelial cell renewal process. In this study, we examined the role of HO-1 in the proliferation and differentiation of Caco-2 cells, a well-established in vitro model for human enterocytes. After confluence, Caco-2 cells undergo spontaneous differentiation and mimic the crypt to villus maturation observed in vivo. In preconfluent and confluent Caco-2 cells, HO-1 protein expression was determined with the immunoblot. HO-1 activity was determined by the ability of the enzyme to generate bilirubin from hemin. The effect of a HO-1 enzyme activity inhibitor, tin protoporphyrin (SnPP), on Caco-2 cell proliferation and differentiation was examined. In preconfluent cells, cell number was determined periodically as a marker of proliferation. Cell viability was measured with MTT assay. Cell differentiation was assessed by the expression of a brush border enzyme, alkaline phophatase (ALP). HO-1 was expressed in subconfluent Caco-2 cells and remained detectable until 2 days postconfluency. This timing was consistent with cells starting their differentiation and taking the features of normal intestinal epithelial cells. HO-1 was inducible in confluent Caco-2 cells by the enzyme substrate, hemin in a dose- and time-dependent manner. SnPP decreased the cell number and viability of preconfluent cells and delayed the ALP enzyme activity of confluent cells. HO-1 may be involved in intestinal cell cycle progression.  相似文献   

4.
5.
6.
Our previous results have shown that transforming growth factor beta (TGFbeta) rapidly activates Ras, as well as both ERKs and SAPKs. In order to address the biological significance of the activation of these pathways by TGFbeta, here we examined the role of the Ras/MAPK pathways and the Smads in TGFbeta(3) induction of TGFbeta(1) expression in untransformed lung and intestinal epithelial cells. Expression of either a dominant-negative mutant of Ras (RasN17) or a dominant-negative mutant of MKK4 (DN MKK4), or addition of the MEK1 inhibitor PD98059, inhibited the ability of TGFbeta(3) to induce AP-1 complex formation at the TGFbeta(1) promoter, and the subsequent induction of TGFbeta(1) mRNA. The primary components present in this TGFbeta(3)-inducible AP-1 complex at the TGFbeta(1) promoter were JunD and Fra-2, although c-Jun and FosB were also involved. Furthermore, deletion of the AP-1 site in the TGFbeta(1) promoter or addition of PD98059 inhibited the ability of TGFbeta(3) to stimulate TGFbeta(1) promoter activity. Collectively, our data demonstrate that TGFbeta(3) induction of TGFbeta(1) is mediated through a signaling cascade consisting of Ras, the MAPKKs MKK4 and MEK1, the MAPKs SAPKs and ERKs, and the specific AP-1 proteins Fra-2 and JunD. Although Smad3 and Smad4 were not detectable in TGFbeta(3)-inducible AP-1 complexes at the TGFbeta(1) promoter, stable expression of dominant-negative Smad3 could significantly inhibit the ability of TGFbeta(3) to stimulate TGFbeta(1) promoter activity. Transient expression of dominant-negative Smad4 also inhibited the ability of TGFbeta(3) to transactivate the TGFbeta(1) promoter. Thus, although the Ras/MAPK pathways are essential for TGFbeta(3) induction of TGFbeta(1), Smads may only contribute to this biological response in an indirect manner.  相似文献   

7.
8.
9.
We have previously demonstrated that activation of the Ras/Mapk pathways is required for transforming growth factor beta (TGF-beta) induction of TGF-beta(1) expression. Here we examined the role of the Ras/Mapk pathways in TGF-beta induction of urokinase-type plasminogen activator receptor (uPAR) expression in untransformed intestinal epithelial cells (IECs). TGF-beta activated the stress-activated protein kinases (Sapk)/c-Jun N-terminal kinases (JNKs) within 5-10 min, an effect that preceeded TGF-beta induction of uPAR expression in these cells. TGF-beta induction of both JNK1 activity and JunD phosphorylation was blocked by expression of a dominant-negative mutant of the type II TGF-beta receptor (DN TbetaRII), a dominant-negative mutant of MKK4 (DN MKK4), or a dominant-negative mutant of Ras (RasN17), or by the addition of the JNK inhibitor SP600125. TGF-beta also induced AP-1 complex formation at the distal AP-1 site (-184 to -178) of the uPAR promoter within 2 h of TGF-beta addition, consistent with the time-dependent up-regulation of uPAR expression. The primary components present in the TGF-beta-stimulated AP-1 complex bound to the uPAR promoter were Jun D and Fra-2. Moreover, addition of SP600125, or expression of DN MKK4 or DN TbetaRII, blocked TGF-beta up-regulation of uPAR in IECs. Accordingly, our results indicate that TGF-beta activates the Ras/MKK4/JNK1 signaling cascade, leading to induction of AP-1 activity, which, in turn, up-regulates uPAR expression. Our results also indicate that the type II TGF-beta receptor (RII) is required for TGF-beta activation of JNK1 and the resulting up-regulation of uPAR expression.  相似文献   

10.
Adult T-cell leukemia (ATL) is a T-cell malignancy associated with human T-cell leukemia virus type 1 (HTLV-1) and characterized by visceral invasion. Degradation of the extracellular matrix by matrix metalloproteinases (MMPs) is a crucial process in invasion of tumors and metastasis. MMP-7 (or matrilysin), is a “minimal domain MMP” with proteolytic activity against components of the extracellular matrix. To determine the involvement of MMP-7 in visceral spread in ATL, this study investigated MMP-7 expression in ATL. MMP-7 expression was identified in HTLV-1-infected T-cell lines, peripheral blood ATL cells and ATL cells in lymph nodes, but not in uninfected T-cell lines or normal peripheral blood mononuclear cells. MMP-7 expression was induced following infection of a human T-cell line with HTLV-1, and specifically by the viral protein Tax. Functionally, MMP-7 promoted cell migration of HTLV-1-infected T cells. The MMP-7 promoter activity was increased by Tax and reduced by deletion of the activator protein-1 (AP-1) binding site. Electrophoretic mobility shift assay showed high levels of AP-1 binding proteins, including JunD, in HTLV-1-infected T-cell lines and ATL cells, and Tax elicited JunD binding to the MMP-7 AP-1 element. Tax-induced MMP-7 activation was inhibited by dominant negative JunD and augmented by JunD/JunD homodimers. Short interfering RNA against JunD inhibited MMP-7 mRNA expression in HTLV-1-infected T-cell lines. These results suggest that the induction of MMP-7 by Tax is regulated by JunD and that MMP-7 could facilitate visceral invasion in ATL.  相似文献   

11.
12.
13.
14.
15.
16.
Role of c-Fos/JunD in protecting stress-induced cell death   总被引:1,自引:0,他引:1  
Zhou H  Gao J  Lu ZY  Lu L  Dai W  Xu M 《Cell proliferation》2007,40(3):431-444
  相似文献   

17.
18.
The intestinal mucosa is a rapidly-renewing tissue characterized by cell proliferation, differentiation, and eventual apoptosis with progression up the vertical gut axis. The inhibition of phosphatidylinositol (PI) 3-kinase by specific chemical inhibitors or overexpression of the lipid phosphatase PTEN enhances enterocyte-like differentiation in human colon cancer cell models of intestinal differentiation. In this report, we examined the role of PI 3-kinase inhibition in the regulation of apoptotic gene expression in human colon cancer cell lines HT29, HCT-116, and Caco-2. Inhibition of PI 3-kinase with the chemical inhibitor wortmannin increased TNF-related apoptosis-inducing ligand (TRAIL; Apo2) mRNA and protein expression. Similarly, overexpression of the tumor suppressor protein PTEN, an antagonist of PI 3-kinase signaling, resulted in the increased expression of TRAIL. Activation of PI 3-kinase by pretreatment with IGF-1, a gut trophic factor, markedly attenuated the induction of TRAIL by wortmannin. Moreover, overexpression of active Akt, a downstream target of PI 3-kinase, or inhibition of GSK-3, a downstream target of active Akt, completely blocked the induction of TRAIL by wortmannin. Consistent with findings that TRAIL is induced by agents that enhance intestinal cell differentiation, TRAIL expression was specifically localized to the differentiated cells of the colon and small bowel. Adenovirus-mediated overexpression of TRAIL increased DNA fragmentation of HCT-116 cells, demonstrating the functional activity of TRAIL induction. Taken together, our findings demonstrate induction of the TRAIL by inhibition of PI 3-kinase in colon cancer cell lines. These results identify TRAIL, a novel TNF family member, as a downstream target of the PI 3-kinase/Akt/GSK-3 pathway and may have important implications for better understanding the role of the PI 3-kinase pathway in intestinal cell homeostasis.  相似文献   

19.
Adult T-cell leukemia (ATL) is a T-cell malignancy associated with human T-cell leukemia virus type 1 (HTLV-1) and characterized by visceral invasion. Degradation of the extracellular matrix by matrix metalloproteinases (MMPs) is a crucial process in invasion of tumors and metastasis. MMP-7 (or matrilysin), is a "minimal domain MMP" with proteolytic activity against components of the extracellular matrix. To determine the involvement of MMP-7 in visceral spread in ATL, this study investigated MMP-7 expression in ATL. MMP-7 expression was identified in HTLV-1-infected T-cell lines, peripheral blood ATL cells and ATL cells in lymph nodes, but not in uninfected T-cell lines or normal peripheral blood mononuclear cells. MMP-7 expression was induced following infection of a human T-cell line with HTLV-1, and specifically by the viral protein Tax. Functionally, MMP-7 promoted cell migration of HTLV-1-infected T cells. The MMP-7 promoter activity was increased by Tax and reduced by deletion of the activator protein-1 (AP-1) binding site. Electrophoretic mobility shift assay showed high levels of AP-1 binding proteins, including JunD, in HTLV-1-infected T-cell lines and ATL cells, and Tax elicited JunD binding to the MMP-7 AP-1 element. Tax-induced MMP-7 activation was inhibited by dominant negative JunD and augmented by JunD/JunD homodimers. Short interfering RNA against JunD inhibited MMP-7 mRNA expression in HTLV-1-infected T-cell lines. These results suggest that the induction of MMP-7 by Tax is regulated by JunD and that MMP-7 could facilitate visceral invasion in ATL. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

20.
We demonstrated previously that c-Jun, JunB and c-Fos RNA were dysregulated in metastatic melanoma cells compared with normal human melanocytes. The purpose of this study was to evaluate the distribution in composition of AP-1 dimers in human melanoma pathogenesis. We investigated AP-1 dimer pairing in radial growth phase-like (RGP) (w3211) and vertical growth phase-like (VGP) (w1205) human melanoma cells and metastatic cell lines (cloned from patients, c83-2c, c81-46A, A375, respectively) compared with melanocytes using electrophoretic mobility shift assay (EMSA), Western blot and transfection analyses. There are progressive variations in AP-1 composition in different melanoma cell lines compared with normal melanocytes, in which c-Jun, JunD and FosB were involved in AP-1 complexes. In w3211, c-Jun, JunD and Fra-1 were involved in AP-1 binding, while in w1205, overall AP-1 binding activity was decreased significantly and supershift binding was detected only with JunD antibodies. In metastatic c81-46A and A375 cells, only JunD was involved in AP-1 binding activity, but in a third (c83-2c) c-Jun, JunD and Fra-1 were present. Western blot evaluation detected c-Jun in melanocytes and w3211, but this component was decreased significantly or was not detectable in w1205, c81-46A and A375 cells. In contrast, JunD protein was elevated in c81-46A and c83-2c cells compared with melanocytes and RGP and VGP cell lines. Normal melanocytes and c83-2c cells (which have c-Jun involved in AP-1 binding), transfected with c-Jun antisense and treated with cisplatin, showed higher viability compared with untransfected cells, while in c81-46A cells (in which only JunD is detectable) no change in cell viability was observed following treatment with cisplatin and c-jun antisense transfection. A dominant-negative c-Jun mutant (TAM67) significantly increased the soft agar colony formation of w3211 and c83-2c cells. These results suggest that components of AP-1, especially c-Jun, may offer a new target for the prevention or treatment of human melanoma progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号