首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this work was to develop matrix sustained-release tablets of highly water-soluble tramadol HCl using natural gums (xanthan [X gum] and guar [G gum]) as cost-effective, nontoxic, easily available, and suitable hydrophilic matrix systems compared with the extensively investigated hydrophilic matrices (ie, hydroxypropyl methylcellulose [HPMC]/carboxymethyl cellulose [CMC] with respect to in vitro drug release rate) and hydration rate of the polymers. Matrix tablets of tramadol (dose 100 mg) were produced by direct compression method. Different ratios, of 100∶0, 80∶20, 60∶40, 20∶80, 0∶100 of G gum (or X):HPMC, X gum:G gum, and triple mixture of these polymers (G gum, X gum, HPMC) were applied. After evaluation of physical characteristics of tablets, the dissolution test was, performed in the phosphate buffer media (pH 7.4) up to 8 hours. Tablets with only X had the highest mean dissolution time (MDT), the least dissolution efficiency (DE8%), and released the drug following a zero-order model via swelling, diffusion, and erosion mechanisms. Guar gum alone could not efficiently control the drug release, while X and all combinations of natural gums with HPMC could retard tramadol HCl release. However, according to the similarity factor (f 2), pure HPMC and H8G2 were the most similar formulations to Topalgic-LP as the reference standard. Published: March 17, 2006  相似文献   

2.
The aim of this paper was to evaluate the performance of different swellable polymers in the form of layered matrix tablets to provide controlled therapeutic effect of metoprolol tartrate for twice daily administration. Seven different swellable polymers (carrageenan, hydroxypropylmethyl cellulose, pectin, guar gum, xanthan gum, chitosan, and ethyl cellulose) were evaluated alone or in combination as release-retardant layer. Tablets were tested for weight variation, hardness, diameter/thickness ratio, friability, and drug content uniformity and subjected to in vitro drug-release studies. In addition, the target-release profile of metoprolol tartrate was plotted using its clinical pharmacokinetic data, and the release profiles of the tablets were evaluated in relation to the plotted target release profile. Carrageenan was determined as the best polymer in two-layered matrix tablet formulations due to its better accordance to the target release profile and was selected for preparing three-layered matrix tablets. Carrageenan formulations exhibited super case II release mechanism. Accelerated stability testing was performed on two- and three-layered matrix tablet formulations of carrageenan. The tablets were stored at 25°C/60% relative humidity and 40°C/75% relative humidity for 6 months and examined for physical appearance, drug content, and release characteristics. At the end of the storage time, formulations showed no change either in physical appearance, drug content, or drug-release profile. These results demonstrated the suitability of three-layered tablet formulation of carrageenan to provide controlled release and improved linearity for metoprolol tartrate in comparison to two-layered tablet formulation.  相似文献   

3.
The objectives were to characterize propranolol hydrochloride-loaded matrix tablets using guar gum, xanthan gum, and hydroxypropylmethylcellulose (HPMC) as rate-retarding polymers. Tablets were prepared by wet granulation using these polymers alone and in combination, and physical properties of the granules and tablets were studied. Drug release was evaluated in simulated gastric and intestinal media. Rugged tablets with appropriate physical properties were obtained. Empirical and semi-empirical models were fit to release data to elucidate release mechanisms. Guar gum alone was unable to control drug release until a 1:3 drug/gum ratio, where the release pattern matched a Higuchi profile. Matrix tablets incorporating HPMC provided near zero-order release over 12 h and erosion was a contributing mechanism. Combinations of HPMC with guar or xanthan gum resulted in a Higuchi release profile, revealing the dominance of the high viscosity gel formed by HPMC. As the single rate-retarding polymer, xanthan gum retarded release over 24 h and the Higuchi model best fit the data. When mixed with guar gum, at 10% or 20% xanthan levels, xanthan gum was unable to control release. However, tablets containing 30% guar gum and 30% xanthan gum behaved as if xanthan gum was the sole rate-retarding gum and drug was released by Fickian diffusion. Release profiles from certain tablets match 12-h literature profiles and the 24-h profile of Inderal® LA. The results confirm that guar gum, xanthan gum, and HPMC can be used for the successful preparation of sustained release oral propranolol hydrochoride tablets.  相似文献   

4.
The aim of this study was to investigate the influence of polymer level and type of some hydrophobic polymers, including hydrogenated castor oil (HCO); Eudragit RS100 (E-RS100); Eudragit L100 (E-L100), and some fillers namely mannitol [soluble filler], Dibasic calcium phosphate dihydrate (Emcompress) and anhydrous dibasic calcium phosphate [insoluble fillers] on the release rate and mechanism of baclofen from matrix tablets prepared by a hot-melt granulation process (wax tablets) and wet granulation process (E-RS100 and E-L100 tablets). Statistically significant differences were found among the drug release profile from different classes of polymeric matrices. Higher polymeric content (40%) in the matrix decreased the release rate of drug because of increased tortuosity and decreased porosity. At lower polymeric level (20%), the rate and extent of drug release was elevated. HCO was found to cause the strongest retardation of drug. On the other hand, replacement of Emcompress or anhydrous dibasic calcium phosphate for mannitol significantly retarded the release rate of baclofen, except for E-L100 (pH-dependent polymer). Emcompress surface alkalinity and in-situ increase in pH of the matrix microenvironment enhanced the dissolution and erosion of these matrix tablets. The release kinetics was found to be governed by the type and content of the excipients (polymer or filler). The prepared tablets showed no significant change in drug release rate when stored at ambient room conditions for 6 months.  相似文献   

5.
The purpose of the present study was to model the effects of the concentration of Eudragit L 100 and compression pressure as the most important process and formulation variables on the in vitro release profile of aspirin from matrix tables formulated with Eudragit L 100 as matrix substance and to optimize the formulation by artificial neural network. As model formulations, 10 kinds of aspirin matrix tablets were prepared. The amount of Eudragit L 100 and the compression pressure were selected as causal factors. In vitro dissolution time profiles at 4 different sampling times were chosen as responses. A set of release parameters and causal factors were used as tutorial data for the generalized regression neural, network (GRNN) and analyzed using a computer. Observed results of drug release studies indicate that drug release rates vary widely between investigated formulations, with a range of 5 hours to more than 10 hours to complete dissolution. The GRNN model was optimized. The root mean square value for the trained network was 1.12%, which indicated that the optimal GRNN model was reached. Applying the generalized distance function method, the optimal tablet formulation predicted by GRNN was with 5% of Eudragit L 100 and tablet hardness 60N. Calculated difference (f 1 2.465) and similarity (f 2 85.61) factors indicate that there is no difference between predicted and experimentally observed drug release profiles for the optimal formulation. This work illustrates the potential for an artificial neural network, GRNN, to assist in development of extended release dosage forms.  相似文献   

6.
The exudates from the incised trunk of Terminalia randii has been evaluated as controlled release excipient in comparison with xanthan gum and hydroxypropylmethylcellulose (HPMC) using carvedilol (water insoluble) and theophylline (water soluble) as model drugs. Matrix tablets were prepared by direct compression and the effects of polymer concentration and excipients—spray dried lactose, microcrystalline cellulose and dicalcium phosphate dihydrate on the mechanical (crushing strength (CS) friability (F) and crushing strength–friability ratio (CSFR)) and drug release properties of the matrix tablets were evaluated. The drug release data were fitted into different release kinetics equations to determine the drug release mechanism(s) from the matrix tablets. The results showed that the CS and CSFR increased with increase in polymer concentration while F decreased. The ranking of CS and CSFR was HPMC > terminalia > xanthan while the ranking was reverse for F. The ranking for t 25 (i.e. time for 25% drug release) at a polymer concentration of 60% was xanthan > terminalia = HPMC. The dissolution time, t 25, of theophylline matrices was significantly lower (p < 0.001) than those of carvedilol matrix tablets. Drug release from the matrices was by swelling, diffusion and erosion. The mechanical and drug release properties of the tablets were significantly (p < 0.05) dependent on the type and concentration of polymer and excipients used with the release mechanisms varying from Fickian to anomalous. Terminalia gum compared favourably with standard polymers when used in controlled release matrices and could serve as a suitable alternative to the standard polymers in drug delivery.  相似文献   

7.
The purpose of this study was to investigate the formulation variables influencing the drug release from the layered tablets containing chitosan and xanthan gum as matrix component. Increasing the amount of lactose could diminish pH sensitive release behavior of these matrix tablets. Effect of formulation variables on drug release from the prepared three-layered matrix tablets was investigated. The amount of drug loading did not affect the drug release which was influenced by the hydrodynamic force and the matrix composition. An increase in stirring rate correspondingly increased the release rate. Moreover, incorporation of soluble diluents in core or barrier could enhance the drug release. Least square fitting the experimental dissolution data to the mathematical expressions (power law, first order, Higuchi’s and zero order) was carried out to study the drug release mechanism. Most dissolution profiles of the prepared three-layered tablets provided a better fit to zero order kinetic than to first order kinetic and Higuchi’s equation.  相似文献   

8.
The objective of the present study was to develop once-daily sustained-release matrix tablets of nicorandil, a novel potassium channel opener used in cardiovascular diseases. The tablets were prepared by the wet granulation method. Ethanolic solutions of ethylcellulose (EC), Eudragit RL-100, Eudragit RS-100, and polyvinylpyrrolidone were used as granulating agents along with hydrophilic matrix materials like hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose, and sodium alginate. The granules were evaluated for angle of repose, bulk density, compressibility index, total porosity, and drug content. The tablets were subjected to thickness, diameter, weight variation test, drug content, hardness, friability, and in vitro release studies. The granules showed satisfactory flow properties, compressibility, and drug content. All the tablet formulations showed acceptable pharmacotechnical properties and complied with in-house specifications for tested parameters. According to the theoretical release profile calculation, a oncedaily sustained-release formulation should release 5.92 mg of nicorandil in 1 hour, like conventional tablets, and 3.21 mg per hour up to 24 hours. The results of dissolution studies indicated that formulation F-I (drug-to-HPMC, 1∶4; ethanol as granulating agent) could extend the drug release up to 24 hours. In the further formulation development process, F-IX (drug-to-HPMC, 1∶4; EC 4% wt/vol as granulating agent), the most successful formulation of the study, exhibited satisfactory drug release in the initial hours, and the total release pattern was very close to the theoretical release profile. All the formulations (except F-IX) exhibited diffusion-dominated drug release. The mechanism of drug release from F-IX was diffusion coupled with erosion.  相似文献   

9.
The purpose of this research was to design oral controlled release (CR) matrix tablets of zidovudine (AZT) using hydroxypropyl methylcellulose (HPMC), ethyl cellulose (EC) and carbopol-971P (CP) and to study the effect of various formulation factors on in vitro drug release. Release studies were carried out using USP type 1 apparatus in 900 ml of dissolution media. Release kinetics were analyzed using zero-order, Higuchi’s square root and Ritger–Peppas’ empirical equations. Release rate decreased with increase in polymer proportion and compression force. The release rate was lesser in formulations prepared using CP (20%) as compared to HPMC (20%) as compared to EC (20%). No significant difference was observed in the effect of pH of dissolution media on drug release from formulations prepared using HPMC or EC, but significant difference was observed in CP based formulations. Decrease in agitation speed from 100 to 50 rpm decreased release rate from HPMC and CP formulations but no significant difference was observed in EC formulations. Mechanism of release was found to be dependent predominantly on diffusion of drug through the matrix than polymer relaxation incase of HPMC and EC formulations, while polymer relaxation had a dominating influence on drug release than diffusion incase of CP formulations. Designed CR tablets with pH independent drug release characteristics and an initial release of 17–25% in first hour and extending the release up to 16–20 h, can overcome the disadvantages associated with conventional tablets of AZT.  相似文献   

10.
The present study was undertaken to evaluate the gum exudates of Terminalia catappa Linn. (TC gum) as a release retarding excipient in oral controlled drug delivery system. The rheological properties of TC gum were studied and different formulation techniques were used to evaluate the comparative drug release characteristics. The viscosity was found to be dependent on concentration and pH. Temperature up to 60°C did not show significant effect on viscosity. The rheological kinetics evaluated by power law, revealed the shear thinning behavior of the TC gum dispersion in water. Matrix tablets of TC gum were prepared with the model drug dextromethorphan hydrobromide (DH) by direct compression, wet granulation and solid dispersion techniques. The dissolution profiles of the matrix tablets were compared with the pure drug containing capsules using the USP Basket apparatus with 500 ml phosphate buffer of pH 6.8 as a dissolution medium. The drug release from the compressed tablets containing TC gum was comparatively sustained than pure drug containing capsules. Even though all the formulation techniques showed reduction of dissolution rate, aqueous wet granulation showed the maximum sustained release of more than 8 h. The release kinetics estimated by the power law revealed that the drug release mechanism involved in the dextromethorphan matrix is anomalous transport as indicated by the release exponent n values. Thus the study confirmed that the TC gum might be used in the controlled drug delivery system as a release-retarding polymer.  相似文献   

11.
The objective of the study was to develop guar gum matrix tablets for oral controlled release of water-soluble diltiazem hydrochloride. Matrix tablets of diltiazem hydrochloride, using various viscosity grades of guar gum in 2 proportions, were prepared by wet granulation method and subjected to in vitro drug release studies. Diltiazem hydrochloride matrix tablets containing either 30% wt/wt lowviscosity (LM1), 40% wt/wt medium-viscosity (MM2), or 50% wt/wt high-viscosity (HM2) guar gum showed controlled release. The drug release from all guar gum matrix tablets followed first-order kinetics via Fickian-diffusion. Further, the results of in vitro drug release studies in simulated gastrointestinal and colonic fluids showed that HM2 tablets provided controlled release comparable with marketed sustained release diltiazem hydrochloride tablets (D-SR tablets). Guar gum matrix tablets HM2 showed no change in physical appearance, drug content, or in dissolution pattern after storage at 40°C/relative humidity 75% for 6 months. When subjectd to in vivo pharmacokinetic evaluation in healthy volunteers, the HM2 tablets provided a slow and prolonged drug release when compared with D-SR tablets. Based on the results of in vitro and in vivo studies it was concluded that that guar gum matrix tablets provided oral controlled release of water-soluble diltiazem hydrochloride. Published: June 30, 2005  相似文献   

12.
Xanthan-g-poly(acrylamide) was synthesized employing microwave-assisted and ceric-induced graft copolymerization, and was characterized by FT-IR, DSC, XRD and SEM studies. Matrix tablets of diclofenac sodium were formulated using graft copolymer as the matrix by direct compression technique. Release behavior of the graft copolymer was evaluated using USP type-II dissolution apparatus in 900 ml of phosphate buffer (pH 6.8), maintained at 37 °C and at 50 rpm. Microwave-assisted grafting provided graft copolymer with higher % grafting in a shorter time in comparison to the ceric-induced grafting. The % grafting was found to increase with the increase in the power of microwave and/or time of exposure. The matrix tablets were found to release the drug by zero-order kinetics, and the faster release of drug was observed from the graft copolymer matrix as compared to the xanthan gum matrix. It was observed that grafting reduces the swelling, but increases the erosion of xanthan gum.  相似文献   

13.
The objective of present investigation was to develop venlafaxine hydrochloride-layered tablets for obtaining sustained drug release. The tablets containing venlafaxine hydrochloride 150 mg were prepared by wet granulation technique using xanthan gum in the middle layer and barrier layers. The granules and tablets were characterized. The in vitro drug dissolution study was conducted in distilled water. The tablets containing two lower strengths were also developed using the same percentage composition of the middle layer. Kinetics of drug release was studied. The optimized batches were tested for water uptake study. Radar diagrams are provided to compare the performance of formulated tablets with the reference products, Effexor XR capsules. The granules ready for compression exhibited good flow and compressibility when xanthan gum was used in the intragranular and extragranular fractions. Monolayer tablets failed to give the release pattern similar to that of the reference product. The drug release was best explained by Weibull model. A unified Weibull equation was evolved to express drug release from the formulated tablets. Lactose facilitated drug release from barrier layers. Substantial water uptake and gelling of xanthan gum appears to be responsible for sustained drug release. The present study underlines the importance of formulation factors in achieving same drug release pattern from three strengths of venlafaxine hydrochloride tablets.  相似文献   

14.
The aim of this investigation was preparation and comparative evaluation of fabricated matrix (FM), osmotic matrix (OM), and osmotic pump (OP) tablets for controlled delivery of diclofenac sodium (DS). All formulations were evaluated for various physical parameters, and in vitro studies were performed on USP 24 dissolution apparatus II in pH 7.4 buffer and distilled water. In vivo studies were performed in 6 healthy human volunteers; the drug was assayed in plasma using HPLC, and results were compared with the performance of 2 commercial tablets of DS. Various pharmacokinetic parameters (ie, Cmax, Tmax, area under the curve [AUC0–24], and mean residence time) and relative bioavailability were compared. All fabricated formulations showed more prolonged and controlled DS release compared with commercial tablets studied. The OM and OP tablets, however, performed better than the matrix tablets. The rate and extent of drug release from FM1 matrix tablets (single polymer) was significantly different from that of FM2 (admixed polymers). Type of porosigenic agents and osmogens also influenced the drug release. Analysis of in vitro data by regression coefficient analysis revealed zero-order release kinetics for OM and OP tablets, while FM tablets exhibited Higuchi kinetics. In vivo results indicated prolonged blood levels with delayed peak and improved bioavailability for fabricated tablets compared to commercial tablets. It was concluded that the osmotic matrix and osmotic pump tablets could provide more prolonged, controlled, and gastrointestinal environmental-independent DS release that may result in an improved therapeutic efficacy and patient compliance.  相似文献   

15.
United States Pharmacopeia dissolution apparatus II (paddle) and III (reciprocating cylinder) coupled with automatic sampling devices and software were used to develop a testing procedure for acquiring release profiles of colon-specific drug delivery system (CODES) drug formulations in multi-pH media using acetaminophen (APAP) as a model drug. System suitability was examined. Several important instrument parameters and formulation variables were evaluated. Release profiles in artificial gastric fluid (pH 1.2), intestinal fluid (pH 6.8), and pH 5.0 buffer were determined. As expected, the percent release of APAP from coated core tablets was highly pH dependent. A release profile exhibiting a negligible release in pH 1.2 and 6.8 buffers followed by a rapid release in pH 5.0 buffer was established. The drug release in pH 5.0 buffer increased significantly with the increase in the dip or paddle speed but was inversely related to the screen mesh observed at lower dip speeds. It was interesting to note that there was a close similarity (f 2=80.6) between the release profiles at dip speed 5 dpm and paddle speed 100 rpm. In addition, the release rate was reduced significantly with the increase in acid-soluble Eudragit E coating levels, but lactulose loading showed only a negligible effect. In conclusion, the established reciprocating cylinder method at lower agitation rates can give release profiles equivalent to those for the paddle procedure for CODES drug pH-gradient release testing. Apparatus III was demonstrated to be more convenient and efficient than apparatus II by providing various programmable options in sampling times, agitation rates, and medium changes, which suggested that the apparatus II approach has better potential for in vitro evaluation of colon-specific drug delivery systems.  相似文献   

16.
The objective of this work was to study the release behavior of prednisolone from calcium-cross-linked carboxymethyl xanthan gum (CMXG) tablets in dissolution medium having different pH values prevailing in the gastrointestinal lumen. Xanthan gum (XG) was derivatized to CMXG which was then cross-linked in situ with Ca+2 ion during wet massing step of tablet preparation. Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry studies did not show any drug-polymer interaction although the drug underwent solid-state transformation during compression as evident from X-ray diffraction analysis. In vitro release study demonstrated that increase in the amount of Ca+2 ion decreased the drug release, and beyond a certain amount, the drug release increased. While increase in both drug load and tablet crushing strength decreased the drug release, increase in exposure time in acid solution of pH 1.2 increased the overall release of the drug. The mechanism of drug release was non-Fickian/anomalous. The results indicated that variation in the amount of Ca+2 ion can modulate the drug release from CMXG matrix tablets as needed.  相似文献   

17.
The purpose of this research was to study processing variables at the laboratory and pilot scales that can affect hydration rates of xanthan gum matrices containing diclofenac sodium and the rate of drug release. Tablets from the laboratory scale and pilot scale proceedings were made by wet granulation. Swelling indices of xanthan gum formulations prepared with different amounts of water were measured in water under a magnifying lens. Granules were thermally treated in an oven at 60°C, 70°C, and 80°C to studythe effects of elevated temperatures on drug release from xanthan gum matrices. Granules from the pilot scale formulations were bulkier compared to their laboratory scale counterparts, resulting in more porous, softer tablets. Drug release was linear from xanthan gum matrices prepared at the laboratory scale and pilot scales, however, release was faster from the pilot scales. Thermal treatment of the granules did not affect the swelling index and rate of drug release from tablets in both the pilot and laboratory scale proceedings. On the other hand, the release from both proceedings was affected by the amount of water used for granulation and the speed of the impeller during granulation. The data suggest that processing variables that affect the degree of wetness during granulation, such as increase in impeller speed and increase in amount of water used for granulation, also may affect the swelling index of xanthan gum matrices and therefore the rate of drug release.  相似文献   

18.
The aim of this study was to investigate the influence of different processing methods on the profiles of 5-aminosalicylic acid dissolution from controlled-release matrix systems based on Eudragit® RL and Eudragit® RS water-insoluble polymers. The pure polymers and their mixtures were studied as matrix formers using different processing methods, i.e., direct compression, wet granulation of the active ingredient with the addition of polymer(s) to the external phase, wet granulation with water, and wet granulation with aqueous dispersions. In comparison with the directly compressed tablets, tablets made by wet granulation with water demonstrated a 6–19% increase in final drug dissolution, whereas when polymers were applied in the external phase during compression, a 0–13% decrease was observed in the amount of drug released. Wet granulation with aqueous polymer dispersions delayed the release of the drug; this was especially marked (a 54–56% decrease in drug release) in compositions, which contained a high amount of Eudragit RL 30D. The release profiles were mostly described by the Korsmeyer–Peppas model or the Hopfenberg model.KEY WORDS: controlled release, matrix tablet, polymethacrylates, release kinetics  相似文献   

19.
The purpose of the research was to evaluate Sterculia foetida gum as a hydrophilic matrix polymer for controlled release preparation. For evaluation as a matrix polymer; characterization of Sterculia foetida gum was done. Viscosity, pH, scanning electronmicrographs were determined. Different formulation aspects considered were: gum concentration (10–40%), particle size (75–420 μm) and type of fillers and those for dissolution studies; pH, and stirring speed were considered. Tablets prepared with Sterculia foetida gum were compared with tablets prepared with Hydroxymethylcellulose K15M. The release rate profiles were evaluated through different kinetic equations: zero-order, first-order, Higuchi, Hixon-Crowell and Korsemeyer and Peppas models. The scanning electronmicrographs showed that the gum particles were somewhat triangular. The viscosity of 1% solution was found to be 950 centipoise and pH was in range of 4–5. Suitable matrix release profile could be obtained at 40% gum concentration. Higher sustained release profiles were obtained for Sterculia foetida gum particles in size range of 76–125 μm. Notable influences were obtained for type of fillers. Significant differences were also observed with rotational speed and dissolution media pH. The in vitro release profiles indicated that tablets prepared from Sterculia foetida gum had higher retarding capacity than tablets prepared with Hydroxymethylcellulose K15M prepared tablets. The differential scanning calorimetry results indicated that there are no interactions of Sterculia foetida gum with diltiazem hydrochloride. It was observed that release of the drug followed through surface erosion and anomalous diffusion. Thus, it could be concluded that Sterculia foetida gum could be used a controlled release matrix polymer.  相似文献   

20.
The aim of this work is to design pH-dependent swellable and erodable-buffered matrices and to study the effect of the microenvironment pH on the release pattern of diclofenac sodium. Buffered matrix tablets containing diclofenac sodium, physically mixed with hydrophilic polymer (hydroxypropyl methylcellulose [HPMC]) and pH-dependent solubility polymer (Eudragit L100-55) were prepared with different microenvironment pHs. The release of diclofenac sodium from the buffer matrices was studied in phosphate buffer solutions of pH 5.9 and 7.4. The swelling and erosion matrices containing only HPMC and Eudragit L100-55 were studied in phosphate buffer solution of pH similar to the microenvironment pHs of the matrices. Drug release from matrices was found to be linear as a function of time. Amount of drug released was found to be higher in the medium of pH 7.4 than that of pH 5.9. The rate of drug release increased with the increase of the microenvironment pH of the matrices as determined from the slope. The pattern of drug release did not change with the change of microenvironment pH. The swelling and erosion occurred simultaneously from matrices made up of HPMC and Eudragit L100-55. Both extent of swelling and erosion increased with increase of the medium pH. It was concluded from this study that changing the pH within the matrix influenced the rate of release of the drug without affecting the release pattern. Fax: Not Forwarded  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号