首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The rates of oxidation and phosphorylation in isolated rat-liver mitochondria have a steep dependence on the protonmotive force (delta mu H+) across the membrane. These experimentally observed relationships proved to be independent of the way in which delta mu H+ was varied. These results were obtained when the membrane potential (delta psi) was calculated from the distribution of K+ (in the presence of valinomycin). When triphenylmethylphosphonium (TPMP+) was used as a probe for delta psi, slightly different flow-force relationships were obtained. We conclude that unique relationships exist between delta mu H+ and the rates of oxidation and phosphorylation, and that under some conditions the behaviour of the probe TPMP+ is anomalous.  相似文献   

4.
5.
The objective of this investigation is to analyze the two following problems of the regulation of mitochondrial oxidative phosphorylation: what is the extramitochondrial parameter that controls ATP production according to the cytoplasmic demands and how the control is distributed between various mitochondrial enzymes. On the basis of the data of Groen et al. (1982) it is shown that as the respiration rates ranged over 30-50% of the maximum (i.e. within the physiological region) the contribution of the adenine nucleotide translocator to the control of the ATP flux is no less than 90%, referring to the total contribution of all mitochondrial enzymes as 100%. Founding on the key role of the adenine nucleotide translocator it has been concluded that besides the extramitochondrial [ATP]/[ADP] ratio the absolute ADP concentration is another extramitochondrial signal controlling significantly the rate of oxidative phosphorylation.  相似文献   

6.
Slip and leak in mitochondrial oxidative phosphorylation   总被引:9,自引:0,他引:9  
During oxidative phosphorylation by mammalian mitochondria part of the free energy stored in reduced substrates is dissipated and energy is released as heat. Here I review the mechanisms and the physiological significance of this phenomenon.  相似文献   

7.
8.
Mechanistic stoichiometry of mitochondrial oxidative phosphorylation   总被引:8,自引:0,他引:8  
P/O ratios of rat liver mitochondria were measured with particular attention to systematic errors. Corrections for energy loss during oxidative phosphorylation were made by measurement of respiration as a function of mitochondrial membrane potential. The corrected values were close to 1, 0.5, and 1 at the three coupling sites, respectively. These values are consistent with recent measurements of mitochondrial proton transport.  相似文献   

9.
10.
1. The ability of a series of compounds to uncouple oxidative phosphorylation of rat-liver mitochondria has been investigated. 2. The compounds were: 2-amino-1,1,3-tricyanopropene; carbonyl cyanide phenylhydrazone and its m-chloro and p-trifluoromethoxy derivatives; 4,5,6,7-tetrachloro-, 5-chloro-4-nitro-, 5-nitro-and 4,5,6,7-tetrachloro-1-methyl-benzotriazole; 4-hydroxy-3,5-di-iodo-, 3,5-di-bromo-4-hydroxy- and 3,5-dichloro-4-hydroxy-benzonitrile; and pentafluorophenol. 3. In a medium the components and physical condition of which were, as far as possible, kept constant, each compound was tested for ability to stimulate adenosine triphosphatase, to stimulate respiration in the presence of pyruvate as substrate, to inhibit phosphate uptake and to prevent swelling by trimethyltin. 4. Each compound was also examined with respect to its ability to produce rapid rigor mortis in mice. 5. The biological properties were compared with the dissociation constant and the hexane–water partition coefficient for each compound. 6. With the exception of 4,5,6,7-tetrachloro-1-methylbenzotriazole, all the compounds behaved qualitatively as 2,4-dinitrophenol. 7. Within each class of compound there is a relation between biological activity and the physical attributes measured. 8. The most efficient uncouplers were the most acidic and the most hydrophobic.  相似文献   

11.
Dimerization or oligomerization of ATP synthase has been proposed to play an important role for mitochondrial cristae formation and to be involved in regulating ATP synthase activity. We found comparable oligomycin-sensitive ATPase activity for monomeric and oligomeric ATP synthase suggesting that oligomerization/monomerization dynamics are not directly involved in regulating ATP synthase activity. Binding of the natural IF1 inhibitor protein has been shown to induce dimerization of F1-subcomplexes. This suggested that binding of IF1 might also dimerize holo ATP synthase, and possibly link dimerization and inhibition. Analyzing mitochondria of human rho zero cells that contain mitochondria but lack mitochondrial DNA, we identified three subcomplexes of ATP synthase: (i) F1 catalytic domain, (ii) F1-domain with bound IF1, and (iii) F1-c subcomplex with bound IF1 and a ring of subunits c. Since both IF1 containing subcomplexes were present in monomeric state and exhibited considerably reduced ATPase activity as compared to the third subcomplex lacking IF1, we postulate that inhibition and induction of dimerization of F1-subcomplexes by IF1 are independent events. F1-subcomplexes were also found in mitochondria of patients with specific mitochondrial disorders, and turned out to be useful for the clinical differentiation between various types of mitochondrial biosynthesis disorders. Supramolecular associations of respiratory complexes, the "respirasomes", seem not to be the largest assemblies in the structural organization of the respiratory chain, as suggested by differential solubilization of mitochondria and electron microscopic analyses of whole mitochondria. We present a model for a higher supramolecular association of respirasomes into a "respiratory string".  相似文献   

12.
A coulombic hypothesis of mitochondrial oxidative phosphorylation is presented, founded upon the evidence for negative fixed charge formation during electron transport chain activity. The intermediary force is electrostatic (psi H) and not electrochemical (delta mu H). The electrochemical potential of the chemiosmotic hypothesis is identified as a "phantom" parameter which owes its delusive existence to the procedures by which it is measured. The connection between psi H and the conditional delta mu H values is examined; it entails the use of a variable conversion factor, f, where delta mu H (mV) = f psi H, and the concept of the "protonic status" of the diffuse double layer. A number of problems which beset the chemiosmotic view are reappraised in the light of the new interpretation, and find authentic solutions.  相似文献   

13.
Inhibition of mitochondrial oxidative phosphorylation by adriamycin   总被引:2,自引:0,他引:2  
The antitumour antibiotic, adriamycin, inhibited oxidative phosphorylation in freshly prepared mitochondria from the heart, liver and kidney of the rat. It abolished respiratory control and stimulated ATPase activity. Succinate oxidation by heart mitochondria was extremely sensitive to the drug when hexokinase was present in the reaction medium. The sensitive site has been identified to lie in the region between the succinate dehydrogenase flavoprotein and ubiquinone of the respiratory chain.  相似文献   

14.
The sesquiterpene lactone, 'parthenin' the toxic principle of the allergenic weed Parthenium hysterophorus, inhibited 'state 3' respiration and stimulated 'state 4' respiration in rat liver and kidney mitochondria as well as ATPase activity in the presence of Mg2+ ions. These properties indicate that the toxic action of parthenin may be related to its interference with oxidative phosphorylation.  相似文献   

15.
16.
To gain further insight into the biochemical properties of the antibacterial hexetidine, isolated rat liver mitochondria were added with this drug and investigation made of certain features related to mitochondrial bioenergetics. Hexetidine was found to cause oxidation of intramitochondrial pyridine nucleotides and stimulate the rate of oxygen uptake caused by respiratory substrates involving three, two and one site(s) of phosphorylation. Reversal of oxygen uptake inhibition by oligomycin was also determined. By investigating hexetidine effect on oxidative phosphorylation, hexetidine was found both to inhibit the rate of ATP synthesis and to cause ATP hydrolysis. Likewise, hexetidine capability to produce acidification of extramitochondrial medium and to collapse delta psi was also observed. The reported findings show that hexetidine exhibits uncoupling properties.  相似文献   

17.
A novel property of mitochondrial oxidative phosphorylation   总被引:1,自引:0,他引:1  
DNA synthesis in isolated HeLa nuclei was measured by 3H-TTP incorporation in the presence of cytosol from S-phase cells. The addition of total calf thymus histone at low concentrations stimulated incorporation. Higher levels of added histone markedly inhibited DNA synthesis. The effects of added histone were dependent on the physiological state of the cells from which nuclei were isolated.  相似文献   

18.
A change in the metabolic flux of glucose from mitochondrial oxidative phosphorylation (OXPHOS) to aerobic glycolysis is regarded as one hallmark of cancer. However, the mechanisms underlying the metabolic switch between aerobic glycolysis and OXPHOS are unclear. Here we show that the M2 isoform of pyruvate kinase (PKM2), one of the rate-limiting enzymes in glycolysis, interacts with mitofusin 2 (MFN2), a key regulator of mitochondrial fusion, to promote mitochondrial fusion and OXPHOS, and attenuate glycolysis. mTOR increases the PKM2:MFN2 interaction by phosphorylating MFN2 and thereby modulates the effect of PKM2: MFN2 on glycolysis, mitochondrial fusion and OXPHOS. Thus, an mTOR-MFN2-PKM2 signaling axis couples glycolysis and OXPHOS to modulate cancer cell growth.  相似文献   

19.
Many chromones, especially those having 2-substituents, manifest a remarkable variety of biological activities, such as the important cytotoxicity against human leukaemia cells, antiallergic, anticancer activities; unfortunately chromones normally disturb mitochondrial bioenergetics. A new 2-styrylchromone has been synthesized by the Baker-Venkataraman method and a classical approach has been used to assess the effects of 2-styrylchromone (3'-allyl-4',5,7-trimethoxy-2-styrylchromone) on rat liver mitochondrial bioenergetic. Mitochondrial respiratory rate and transmembrane potential were measured polarographically using a Clark oxygen electrode and with a selective electrode, respectively. All the disturbance induced by 2-styrylchromone on the enzymatic activities (succinate dehydrogenase, succinate cytochrome c reductase, and cytochrome c oxidase) and in the mitochondrial osmotic volume were determined spectrophotometrically. State 4, state 3, and uncoupled (presence of carbonylcyanide p-trifluoromethoxyphenylhydrazone) respiration rates were decreased by 2-styrylchromone in a concentration-dependent manner. Depression of respiratory activity promoted by 2-styrylchromone is essentially mediated through partial inhibition of succinate cytochrome c reductase. Phosphorylation capacity was strongly depressed as a result of an inhibition on the enzymatic complex (F(0)F(1)-ATPase) and also because of a deleterious effect on the integrity of the mitochondrial membrane, which uncoupled the respiration-generated proton gradient with the proton-driven phosphorylation. The structural integrity of the outside membrane is severely affected since cytochrome c can be released. 2-Styrylchromone uncouples oxidative phosphorylation by an inhibitory action on the redox chain and ATP synthase activity. Additionally, it can release cytochrome c. Cell death can probably result due to the induction of procaspase-9 and other procaspases and by a strong decrease of the available ATP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号