首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Cytosolic dexamethasone (DEX) binding sites were studied in the Wallerian-degenerating rat optic nerve (ON), a tissue that is rich in neuroglial cells but devoid of neuronal perikarya and processes. For comparison, hippocampal (HI) and anterior pituitary (AP) cytosols were studied in parallel. Binding sites in these three tissues were found to be quite similar in almost all respects. The sites have a high affinity for DEX ( K D= 2.5–3.5 n M ), are present at a high concentration ( B max= 360–365 fmol/mg cytosol protein), and possess a binding specificity typical of glucocorticoid receptors in other organs. Most experiments supported the assumption of a single DEX-binding species in each tissue. Saturation analyses consistently yielded linear Scatchard plots over the range of DEX concentrations tested. Density gradient centrifugation in each case revealed a single peak with a sedimentation coefficient of 7–8S at low ionic strength and 4–4.5S in the presence of 0.3 M KCl. Isoelectric focusing similarly localized most of the binding in each cytosol to a single large peak with an isoelectric point of approximately 6.0. Dissociation rate determinations, on the other hand, suggested the possibility of two different binding sites in each tissue. These studies show that glucocorticoid binders present in cells of the ON possess the same characteristics as the cytoplasmic receptors found in HI, AP, and other recognized glucocorticoid target tissues.  相似文献   

2.
Glucocorticoid regulation of glycerolphosphate dehydrogenase (GPDH) activity and gene expression in the developing rat brain appears complex throughout the postnatal developmental period and attains the adult pattern after the first month of life. GPDH enzyme activity is higher in the limbic system than in the cerebral cortex of intact young animals. Adrenalectomy of young rats, before the first month of life, does not affect GPDH enzyme activity in the brain areas mentioned above, while in the adult animals it results in a statistically significant decrease in activity. Furthermore, adult type glucocorticoid responsivity of GPDH enzyme activity is attained in the developing limbic system earlier — by day 40 of life — than in the cerebral cortex. During the first month of life, GPDH basal mRNA levels are increased in the absence of glucocorticoids, in both the limbic system and the cortex, in contrast to the effect of adrenalectomy in the adults, where GPDH mRNA levels are decreased in the absence of the adrenals. The observed pattern of glucocorticoid regulation of GPDH during development in the rat is discussed in relation to the possible existence of various levels of regulation of GPDH gene and enzyme activity.  相似文献   

3.
The immunocytochemical distribution of glutamate dehydrogenase was studied in the cerebellum of the rat using antibodies made in rabbit and guinea pig against antigen purified from bovine liver. Antiserum was found to block partially enzymatic activity both of the purified enzyme and of extracts of the rat cerebellum. Using immunoblots of proteins of rat cerebellum, a major immunoreactive protein and several minor immunoreactive proteins were detected with antiserum. Only a single immunoreactive protein was detected using affinity-purified antibody preparations. This protein migrates with a molecular weight identical to that of the subunit of glutamate dehydrogenase. Further evidence that the antibodies were selective for glutamate dehydrogenase in rat cerebellum was obtained through peptide mapping. Purified glutamate dehydrogenase and the immunoreactive protein from rat cerebellum generated similar patterns of immunoreactive peptides. No significant cross-reaction was observed with glutamine synthetase. Immunocytochemistry was done on cryostat- and Vibratome-cut sections of the cerebellum of rats that had been perfused with cold 4% paraformaldehyde. Glial cells were found to be the most immunoreactive structures throughout the cerebellum. Most apparent was the intense labeling of Bergmann glial cell bodies and fibers. In the granule cell layer, heavy labeling of astrocytes was seen. Purkinje and granule cell bodies were only lightly immunoreactive, whereas stellate, basket, and Golgi cells were unlabeled. Labeling of presynaptic terminals was not apparent. These findings suggest that glutamate dehydrogenase, like glutamine synthetase, is enriched in glia relative to neurons.  相似文献   

4.
5.
The distribution of intermediate filament proteins in optic nerve and spinal cord from rat, hamster, goldfish, frog, and newt were analyzed by two-dimensional gel electrophoresis. General as well as specific monoclonal and polyclonal antibodies were reacted against putative intermediate filament proteins. In vitro incubations of excised optic nerve in the presence of [35S]methionine distinguished between neuronal and nonneuronal intermediate filament proteins. The proteins of the intermediate filament complex in the two tissues for rat and hamster were similar. The typical neurofilament triplet and glial fibrillary acidic protein (GFAP) were observed. Vimentin was more concentrated in the optic nerve than in the spinal cord. The goldfish, newt, and frog contained neurofilament proteins in the 145-150K range and in the 70-85K range. In addition, predominant neurofilament proteins in the 58-62K molecular-weight range were found in all three species. In contrast to mammalian species, the goldfish, newt, and frog displayed extensive heterogeneity between optic nerve and spinal cord in the expression of both neuronal and nonneuronal intermediate filament proteins. The distinctive presence of low-molecular-weight intermediate filament proteins and their high concentration in the optic nerve and spinal cord of these nonmammalian vertebrates is discussed in terms of neuronal development and regeneration.  相似文献   

6.
I examined whether the phorbol ester-mediated inhibition of glycerol 3-phosphate dehydrogenase (GPDH) induction could be mimicked by raising the cellular diacylglycerol levels. Phorbol ester tumor promoters and diacylglycerols activate protein kinase C. An increase in radiolabeled diacylglycerol levels in C6 rat glioma cells was observed when cells were prelabeled overnight with [3H]arachidonic acid and treated with either phospholipase C (Clostridium perfringens) or 2-bromooctanoate. The increase was dose dependent. The diacylglycerols competed with [20-3H]phorbol 12,13-dibutyrate in binding to the phorbol ester receptor. A Scatchard analysis of the binding of cells treated with 0.1 unit/ml of phospholipase C demonstrated that the inhibition was mainly due to a decrease in binding affinity and not in the total number of binding sites. 2-Bromooctanoate and phospholipase C, but not the synthetic diacylglycerol 1-oleoyl 2-acetyl glycerol, inhibited the glucocorticoid induction of GPDH levels. Boiled phospholipase C, phospholipase A2, or phospholipase D was ineffective in inhibiting induction, a result suggesting that the inhibition was not due to nonspecific membrane perturbation. Thus, inhibition of the glucocorticoid-mediated increase in GPDH induction is most likely mediated by protein kinase C, and not by an alternate phorbol ester receptor.  相似文献   

7.
An increase in the concentration of glycerol in the ischemic brain is assumed to reflect degradation of phospholipids of plasma membranes. However, glycerol could, theoretically, be formed from glucose, which after glycolytic conversion to dihydroxyacetone phosphate, could be converted to glycerol-3-phosphate and hence to glycerol. We show here that (13)C-labeled glycerol accumulate in incubation media of cultured cerebellar granule cells and astrocytes incubated with [(13)C]glucose, 3 mmol/L, demonstrating the formation of glycerol from glucose. Co-incubation of cerebellar granule cells with kainate, 50 micromol/L, led to increased glucose metabolism and increased accumulation of [(13)C]glycerol. Accumulation of [(13)C]glycerol and its precursor, [(13)C]glycerol-3-phosphate, was evident in brain, but not in serum, of kainate-treated rats that received [U-(13)C]glucose, 5 micromol/g bodyweight, intravenously and survived for 5 min. Global ischemia induced by decapitation also caused accumulation of [(13)C]glycerol and [(13)C]glycerol-3-phosphate. These results show that glycerol can be formed from glucose in brain; they also demonstrate the existence of a cerebral glycerol-3-phosphatase activity. Ischemia-induced increases in brain glycerol may, in part, reflect an altered metabolism of glucose, in which glycerol formation, like lactate formation, acts as a redox sink.  相似文献   

8.
The predominant proteins (58K) of the intermediate filament complex in the goldfish visual pathway consist of a series of isoelectric variants. Previous biochemical studies have shown that proteins ON1 and ON2 are of neuronal origin, whereas ON3 and ON4 are of nonneuronal origin. Polyclonal antibodies, purified by affinity chromatography, that are specific for ON1 and ON2 or ON3 and ON4 have been used to localize histologically the ON proteins within the normal and crushed optic nerve. Anti-ON1/ON2 antiserum presented a pattern consistent with intraaxonal staining. A nonneuronal staining pattern was observed with anti-ON3/ON4 antiserum. The two patterns were distinct from and complementary to each other. The data suggest that ON3 and ON4 represent a novel glial fibrillary acidic protein. The results are discussed in terms of the function of these proteins in development, plasticity, and regeneration.  相似文献   

9.
Abstract: We have previously shown that cytosine arabinoside (AraC)-induced apoptosis of cerebellar granule cells (CGCs) results in an increase of a 38-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12). Antisense oligonucleotides to GAPDH mRNA afford acutely plated CGCs significant protection against AraC-induced apoptosis. We used differential centrifugation to examine which subcellular components are affected. Treated and untreated cells were sonicated in 0.32 M sucrose and sequentially centrifuged at 1,000, 20,000, and 200,000 g , to obtain crude nuclear, mitochondrial, microsomal, and cytosolic fractions. Western blotting showed that the levels of GAPDH protein were markedly increased in the 1,000- and 20,000- g pellets. The levels in the cytosolic supernatant were decreased dramatically by AraC in acutely plated CGCs but not in cells 24 h after plating. It is noteworthy that although GAPDH protein in the pellet fractions increased, the dehydrogenase activity of GAPDH decreased. Two other dehydrogenases, lactate dehydrogenase (EC 1.1.1.27) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49), were not similarly affected, suggesting that the effect was GAPDH specific. These observations suggest that GAPDH levels change in specific organelles during apoptosis for reasons that are separate from its function as a glycolytic enzyme. The accumulation of GAPDH protein in specific subcellular loci may play a role in neuronal apoptosis.  相似文献   

10.
We investigated changes in the sub-cellular distribution of glycelaldehyde-3-phosphate dehydrogenase (GAPDH) after X-ray irradiation in HeLa cells. Twenty-four h after irradiation at 5 Gy, nuclear GAPDH levels increased 2.6-fold, whereas total GAPDH levels increased only 1.2-fold. Knockdown of GAPDH using specific small interfering RNA (siRNA) led to sensitization to X-ray-induced cell death. These results suggest that GAPDH plays a role in the radioresponse.  相似文献   

11.
We recently reported that by postnatal day 40 the activity of sn-glycerol-3-phosphate dehydrogenase (GPDH) was significantly depressed in the cerebellum of genetic-hypothyroid mutant mice. This mutant mouse-GPDH combination was used in the present study to define the critical time period during which thyroid hormone (T4) and growth hormone (GH) are essential for maturation of Bergmann glial cells. Our findings are that (a) induction of GPDH activity in the Bergmann glial cell is dependent on T4, (b) T4 is most effective when administered during the second 20 days of postnatal life, (c) the effect of GH on GPDH activity is complementary to or synergistic with that of T4, and (d) Bergmann glial cells and radial glial fibers of the mutant mice contain immunoreactive GPDH following various hormonal treatments. These results suggest that T4 is indispensable for the maturation of Bergmann glial cells.  相似文献   

12.
Abstract: The present study sought to investigate the presence and distribution of some enzymatic activities involved in the metabolism of glutamate in the giant nerve fiber of the tropical squid Sepioteuthis sepioidea . Specific activities of aspartate aminotransferase and glutamate dehydrogenase were evaluated in homogenates of the isolated giant fiber, extruded axoplasm, and axoplasm-free giant nerve fiber sheaths. The activities of both enzymes were present in the tissue. The specific activity of aspartate aminotransferase was similar in axoplasm and sheaths. However, the specific activity of glutamate dehydrogenase was an order of magnitude higher in the sheaths. This finding is discussed in the framework of the hypothesis that proposes that a differential distribution of the enzymes of the glutamatergic system between the axonal and neuroglial compartments forms part of a system of communication between these cells whose neuronal signal may be glutamate.  相似文献   

13.
A possible alternative route for production of a small glutamate pool in brain is from proline or ornithine to 1-pyrroline-5-carboxylate (P5C) and thence to glutamate. The conversion from ornithine to P5C is catalyzed by ornithine delta-aminotransferase (OrnT) whereas that from proline is catalyzed by proline oxidase (PrO). The conversion of P5C to glutamate is catalyzed by 1-pyrroline-5-carboxylate dehydrogenase (PDH). Biochemical assays of PDH and PrO in various rat brain regions indicate no positive correlation between the two enzymes nor between either activity and high-affinity glutamate uptake or the regional distribution of OrnT. We have localized PDH and PrO histochemically by modifications of the Van Gelder [J. Neurochem. 12, 231-237, (1965)] method for gamma-aminobutyric acid (GABA) transaminase. The enzymes were found only in certain types of glial cells; the best stained were the Bergmann glial cells of the cerebellum but, for PDH, there was also good staining of astrocytes in the dentate area of the hippocampus. Since both these areas are believed to have heavy glutamate innervation and numerous GABA interneurons, these findings may reflect an alternative route of glutamate production in glial cells near some glutamate and/or GABA tracts but they do not support this as a possible route for glutamate formation in most brain regions. The findings do, however, provide further evidence for chemical specialization of glial cells.  相似文献   

14.
15.
1.To study proteins transported with actin in axons, we pulse-labeled motoneurons in the chicken sciatic nerve with [35S]methionine and, 1–20 days later, isolated actin and its binding proteins by affinity chromatography of Triton soluble nerve extracts on DNase I–Sepharose. The DNase I-purified proteins were electrophoresed on two-dimensional gels and the specific activity of the radioactively labeled protein spots was estimated by fluorography.2.In addition to actin, which binds specifically to DNase I, a small number of other proteins were labeled, including established actin monomer binding proteins and a protein of 36 kDa and pI 8.5. On the basis of its molecular mass, pI, amino acid composition, and immunostaining, the unrecognized protein was identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH).3.The high-affinity binding of GAPDH to actin was confirmed by incubation of Triton-soluble nerve extracts with either mouse anti-GAPDH (or antiactin) and indirect immunomagnetic separation with Dynabeads covalently linked to sheep anti-mouse antibody. Analysis by one-dimensional gel electrophoresis and immunoblotting showed that actin and GAPDH were the main proteins isolated by these methods.4.Analysis of labeled nerves at 12 and 20 days after pulse labeling showed that GAPDH and actin were transported at the same rate, i.e., 3–5 mm/day, which corresponds to slow component b of axonal transport. These proteins were not associated with rapidly transported proteins that accumulated proximal to a ligation 7 cm from the spinal cord 9 hr after injection of radioactivity.5.Our results indicate that GAPDH and actin are transported as a complex in axons and raise the possibility that GAPDH could act as a chaperone for monomeric actin, translocating it to intraaxonal sites for exchange with or assembly into actin filaments. Alternatively, actin could be involved in translocating and anchoring GAPDH to specialized sites in axons and nerve terminals that require a source of ATP by glycolysis.  相似文献   

16.
目的:探讨玻璃体腔内注射移植体外培养的骨髓间充质干细胞(Bone marrow mesenchymal stem cells, BMSCs)对家猫视神经损伤后视网膜神经节细胞(Retinal ganglion cells, RGCs)的影响及其可能的作用机制。方法:参照标准化家猫外伤性视神经损伤动物模型建立的方法建立右眼视神经夹伤家猫模型,然后将其分为以下四组:(1)A组:右眼BMSCs注射移植组,玻璃体腔内接受注射移植BMSCs浓度为1×10~5细胞/μL的单细胞悬液0.1 m L;(2)B组:右眼PBS注射组,玻璃体腔内注射PBS缓冲液0.1 mL;(3)C组:假损伤控制组,BMSCs左眼组,仅暴露视神经而不损伤,不接受治疗;(4)D组:正常对照组,PBS左眼组,正常眼,不做任何处理。分别在移植后的3、7、14及28天,用免疫荧光染色双十八烷基四甲基吲哚羰基花青高氯酸盐染色标记法观察分离视网膜的RGCs存活率,用双抗体一步夹心法酶联免疫吸附试验方法检测分离视网膜的脑源性神经营养因子(Brain derived neurotrophic factor, BDNF)的含量。结果:术后3、7、14及28天,在周边区及中央区视网膜上RGCs密度均显著减少(周边区:P3d=0.0446, P7d=0.0011, P14d 0.001, P28d0.001;中央区:P3d=0.0437, P7d=0.0067, P14d0.001, P28d0.001)。7天、14天、28天后,A组RGCs密度及BDNF含量均显著高于B组(P0.05)。结论:BMSCs移植可以减缓外伤性视神经损伤家猫RGCs凋亡,可能与其增加BDNF表达有关。  相似文献   

17.
Fractions enriched in plasma membranes have been obtained from peripheral nerves enriched 89% in quiescent Schwann cells. Fractions were prepared from the intrafascicular tissue of desheathed distal stumps of cat sciatic nerve 8-10 weeks after transection and suture in the upper thigh. Tissue enriched in Schwann cells was minced, homogenized, and centrifuged to remove nuclei and undispersed tissue. Centrifugation of the resulting supernatant produced a pellet that was osmotically shocked, layered over a discontinuous sucrose gradient, and recentrifuged. Fractions enriched in plasma membrane (PM) markers were pooled, osmotically shocked for 16 h, layered over a second discontinuous sucrose density gradient, and recentrifuged. Membrane fractions (0.6 M:0.85 M and 0.85 M:1.0 M interfaces) contained a homogeneous population of unilamellar vesicles free of myelin. The 0.85 M fraction was enriched in 5'-nucleotidase, 2',3'-cyclic nucleotide 3'-phosphohydrolase. and specific [3H]ouabain binding, 4.8-, 3.0-, and 5.7-fold over the crude homogenate, respectively. These fractions also demonstrated low enzyme activities for succinate dehydrogenase, lactate dehydrogenase, and glucose-6-phosphatase (9, 13, and 15% of control values, respectively). Protein yield of the PM fraction (0.85 M) was approximately 0.6 mg/g of denervated nerve. This preparation should be suitable to characterize the surface properties of Schwann cells free of neuronal regulation.  相似文献   

18.
葡糖-6-磷酸脱氢酶(G6PD)在许多肿瘤细胞中高表达,但其发生的作用机理目前仍然不明确.以正常人表皮黑色素细胞(HEM)、野生型人黑色素瘤A375细胞(A375-WT)和G6PD缺陷的A375细胞(A375-G6PDΔ)为对象,经real-time PCR、Western印迹和紫外分光光度法分析显示,A375-WT细胞的mRNA、G6PD蛋白和G6PD活性分别是HEM细胞的1.89倍(P0.05)、6.86倍(P0.01)和2.30倍(P0.05).Annexin V/PI流式细胞仪和Western印迹测定表明,A375-G6PDΔ的凋亡率是A375-WT的5.10倍(P0.01),活化半胱氨酸蛋白酶3(caspase-3)增高1.84倍(P0.01)以及89 kD多聚二磷酸腺苷核糖聚合酶-1(PARP-1)生成增加2.87倍(P0.01).分光光度法分析显示,A375-G6PDΔ的NADPH和GSH分别降低了72.30%(P0.01)和27.39%(P0.05),并伴有75.43%的H2O2增高(P0.01).结果提示,G6PD在黑色素瘤细胞中高表达和高活性,而敲减G6PD表达通过caspase-3和PARP-1信号诱发人黑色素瘤细胞凋亡,这为深入揭示黑色素瘤的发生机理提供了新思路。  相似文献   

19.
We have compared the effects of norepinephrine, forskolin, and dibutyryl cyclic AMP (Bt2cAMP) on the regulation of the cytosolic enzyme glycerol phosphate dehydrogenase (GPDH) in the C6 rat glioma cell line. Forskolin and Bt2cAMP elicit a dose-dependent increase in the levels of the enzyme that was, however, unaffected by norepinephrine. The half-maximal effect of forskolin was obtained at 7-8 microM, and the effect was maximal at 30 microM. Dexamethasone at a 50 nM concentration produced a two- to sixfold induction of GPDH after 48 h. The combination of dexamethasone with forskolin or Bt2cAMP leads to an elevation in GPDH levels that is higher than that produced by one of the compounds alone. This potentiation is found when both agents are added together with or after the glucocorticoid. The increase in uninduced and dexamethasone-induced GPDH activity was blocked by cycloheximide and actinomycin D, indicating that de novo protein and RNA synthesis are required. The activity of cytosolic lactate dehydrogenase activity did not change after incubation with dexamethasone, but increased with forskolin or Bt2cAMP.  相似文献   

20.
Catecholamine content and in vitro activities of tyrosine hydroxylase (TH) and noradrenaline N-methyltransferase (NMT) were measured in cultures of isolated adrenal medullary cells from newborn and young postnatal rats to study the effects of the differentiation factors glucocorticoids and nerve growth factor (NGF). During the 4-day culture period the cellular catecholamine (CA) content and TH activity remained stable, whereas NMT activity dropped to about half of the initial level. In cells from 2- and 10-day-old rats 10 microM dexamethasone specifically prevented this loss in NMT activity. Furthermore, this glucocorticoid treatment increased, in a dose-dependent manner, the total CA content by 50-100% over control levels without changes in the adrenaline (A) proportion or TH activity. In contrast, NGF did not affect NMT activities at all. In cells from 10-day-old rats 100 ng/ml NFG elevated TH activity and total CA content to about 160% of controls and did not change the proportion of A. This increase in total CA content was linear with the NGF dose and required greater than 5 ng/ml NGF. In chromaffin cells from 2-day-old rats 100 ng/ml NGF affected neither TH activity nor the total content, whereas it significantly reduced the proportion of A by about 25%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号