首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 521 毫秒
1.
The carbon isotopic composition (δ13C) of plant material has been used extensively as an indirect measure of carbon fixation per volume of water used. More recently, the δ13C of phloem sap (δ13Cphl) has been used as a surrogate measure of short‐term, canopy scale δ13C. Using a combination of δ13C physiological, structural and chemical indices from leaves and phloem sap of Eucalyptus globulus at sites of contrasting water availability, we sought to identify short‐term, canopy scale resource limitations. Results illustrate that δ13Cphl offers valid reflections of short‐term, canopy scale values of leaf δ13C and tree water status. Under conditions limited by water, leaf and phloem sap photoassimilates differ in 13C abundance of a magnitude large enough to significantly influence predictions of water use efficiency. This pattern was not detected among trees with adequate water supply indicating fractionation into heterotrophic tissues that may be sensitive to plant water status. Trees employed a range of physiological, biochemical and structural adaptations to acclimate to resource limitation that differed among sites providing a useful context upon which to interpret patterns in δ13C. Our results highlight that such easily characterized properties are ideal for use as minimally invasive tools to monitor growth and resilience of plants to variations in resource availability.  相似文献   

2.
We aimed to quantify the separate effects of photosynthetic and postphotosynthetic carbon isotope discrimination on δ13C of the fast‐turn‐over carbon pool (water soluble organic carbon and CO2 emitted from heterotrophic tissues), including their diel variation, along the pathway of carbon transport from the foliage to the base of the stem. For that purpose, we determined δ13C in total and water‐soluble organic matter of the foliage plus δ13C and δ18O in phloem organic matter of twigs and at three heights along the stem of Pinus sylvestris over a nine‐day period, including four measurements per day. These data were related to meteorological and photosynthesis parameters and to the δ13C of stem‐emitted CO2. In the canopy (foliage and twigs), the δ13C of soluble organic matter varied diurnally with amplitudes of up to 1.9‰. The greatest 13C enrichment was recorded during the night/early morning, indicating a strong influence of starch storage and remobilization on the carbon isotope signatures of sugars exported from the leaves. 13C enrichment of soluble organic matter from the leaves to the twig phloem and further on to the phloem of the stem was supposed to be a result of carbon isotope fractionation associated with metabolic processes in the source and sink tissues. CO2 emitted from the stem was enriched by 2.3–5.2‰ compared with phloem organic matter. When day‐to‐day variation was addressed, water‐soluble leaf δ13C and twig phloem δ18O were strongly influenced by ci/ca and stomatal conductance (Gs), respectively. These results show that both photosynthetic and postphotosynthetic carbon isotope fractionation influence δ13C of organic matter over time, and over the length of the basipetal transport pathway. Clearly, these influences on the δ13C of respired CO2 must be considered when using the latter for partitioning of ecosystem CO2 fluxes or when the assessment of δ13C in organic matter is applied to estimate environmental effects in ci/ca.  相似文献   

3.
John Pate  David Arthur 《Oecologia》1998,117(3):301-311
A recently described phloem-bleeding technique was used to study seasonal changes in δ13C, sugar levels and the amino acid:sugar balance of phloem translocate of 2- to 3-year old trees of Eucalyptus globulus at a rain-fed site (Eulup) and a waste-effluent-irrigated site (Albany) in south-west Australia. δ13C of phloem sap from the Eulup site fluctuated widely between winter (−27.6‰) and peak summer stress (−20.2‰), compared with a much smaller range of −28.4 to −26.3 at Albany. Seasonal changes in sugar concentrations in sap fluctuated closely with those of phloem δ13C, with highest concentrations and least negative δ13C values at times of greatest soil water deficit. Molar ratios of amino acids to sugars in phloem sap were similar between plantations in winter through to early summer. They then remained high at the nitrogen-rich effluent-treated site, but fell dramatically once soils dried out at Eulup. Mature leaf dry matter sampled at peak yearly stress (early autumn) showed more negative δ13C values than concurrently harvested phloem sap or recently initiated shoot apex dry matter, presumably because the sampled foliage had laid down its structural carbon earlier under relatively unstressed winter/spring conditions. Differences between Albany and Eulup were much greater for δ13C of phloem and new apical dry matter than for dry matter of mature foliage. Comparisons of δ13C signatures of phloem sap carbon with those of dry matter of nascent xylem tissues showed seasonal fluctuations in δ13C of phloem translocate which were mirrored a month or so later by those for xylem carbon. δ13C analyses of trunk growth rings from Eulup and Albany showed well-defined seasonal oscillations over the first 2 or 3 years of growth until irrigation commenced at Albany. Fluctuations in δ13C at the latter site then became noticeably less pronounced than at Eulup. Future use of phloem sap δ13C and solute analyses for studying seasonal water and nutrient status of E. globulus is discussed. Received: 9 April 1998 / Accepted: 20 August 1998  相似文献   

4.
At eight different dates during the 2000 growing season, δ13C and δ18O were determined in the phloem of adult beech trees growing in natural beech stands in south‐west Germany differing in stand density and local climate. In addition, stand transpiration, precipitation, photosynthetic active radiation, relative air humidity, water pressure deficit of the air, air and soil temperature, soil water potential, and sugar concentration of the phloem sap were determined directly and evaporation and canopy stomatal conductance were modelled. All parameters were related to δ13C. The study aimed to identify the time integral within which the δ13C of organic compounds transported in the phloem is an indicative measure of these environmental influences. δ13C of soluble carbon transported in the phloem was well correlated with mean stomatal conductance in a two‐day integral prior to phloem sampling but did not depend on either light intensity or soil water availability. A strong positive relationship between δ13C and δ18O pointed to observed variation in δ13C of phloem sap being a result of variation in stomatal conductance. Bulk leaf δ13C was a poor indicator of changes in environmental conditions during the growing season. From these results we conclude that the analysis of δ13C in soluble carbon transported in the phloem is a reliable indicator of short‐term changes in Ci/Ca. In contrast, the δ13C of structural carbon in beech foliage represents an integration of a range of factors that mask short‐term influences responsible for Ci/Ca.  相似文献   

5.
The economy of carbon, nitrogen and water during growth of nodulated, nitrogen-fixing plants of white lupin (Lupinus albus L.) was studied by measuring C, N and H2O content of plant parts, concentrations of C and N in bleeding sap of xylem and phloem, transpirational losses of whole shoots and shoot parts, and daily exchanges of CO2 between shoot and root parts and the surrounding atmosphere. Relationships were studied between water use and dry matter accumulation of shoot and fruits, and between net photosynthesis rate and leaf area, transpiration rate and nitrogen fixation. Conversion efficiencies were computed for utilization of net photosynthate for nitrogen fixation and for production of dry matter and protein in seeds. Partitioning of the plant's intake of C, N and H2O was described in terms of growth, transpiration, and respiration of plant parts. An empirically-based model was developed to describe transport exchanges in xylem and phloem for a 10-day interval of growth. The model depicted quantitatively the mixtures of xylem and phloem streams which matched precisely the recorded amounts of C, N and H2O assimilated, absorbed or consumed by the various parts of the plant. The model provided information on phloem translocation of carbon and nitrogen to roots from shoots, the cycling of carbon and nitrogen through leaves, the relationship between transpiration and nitrogen partitioning to shoot organs through the xylem, the relative amount of the plant's water budget committed to phloem translocation, and the significance of xylem to phloem transfer of nitrogen in stems as a means of supplying nitrogen to apical regions of the shoot.  相似文献   

6.
During the growing season of the exceptionally dry and warm year 2003, we assessed seasonal changes in nitrogen, carbon and water balance related parameters of mature naturally grown European beech (Fagus sylvatica L.) along a North–South transect in Europe that included a beech forest stand in central Germany, two in southern Germany and one in southern France. Indicators for N balance assessed at all four sites were foliar N contents and total soluble non-protein nitrogen compounds (TSNN) in xylem sap, leaves and phloem exudates; C and water balance related parameters determined were foliar C contents, δ13C and δ18O signatures. Tissue sampling was performed in May, July and September. The N related parameters displayed seasonal courses with highest concentrations during N remobilization in May. Decreased total foliar N contents as well as higher C/N ratios in the stands in central Germany and southern France compared to the other study sites point to an impaired N nutrition status due to lower soil N contents and precipitation perception. TSNN concentrations in leaves and phloem exudates of all study sites were in ranges previously reported, but xylem sap content of amino compounds in July was lower at all study sites when compared to literature data (c. 1 μmol N mL−1). In September, TSNN concentrations increased again at the two study sites in southern Germany after a rain event, whereas they remained constant at sites in central Germany and southern France which hardly perceived precipitation during that time. Thus, TSNN concentrations in the xylem sap might be indicative for water balance related N supply in the beech trees. TSNN profiles at all study sites, however, did not indicate drought stress. Foliar δ13C, but not foliar C and δ18O followed a seasonal trend at all study sites with highest values in May. Differences in foliar δ13C and δ18O did not reflect climatic differences between the sites, and are attributed to differences in altitude, photosynthesis and δ18O signatures of the water sources. Except of low TSNN concentrations in the xylem sap, no physiological indications of drought stress were detected in the trees analysed. We suppose that the other parameters assessed might not have been sensitive to the drought events because of efficient regulation mechanisms that provide a suitable physiological setting even under conditions of prolonged water limitation. The uniform performance of the trees from southern France and central Germany under comparably dry climate conditions denotes that the metabolic plasticity of mature beech from the different sites studied might be similar.  相似文献   

7.
Diurnal water balance of the cowpea fruit   总被引:9,自引:1,他引:8       下载免费PDF全文
The vascular network of the cowpea (Vigna unguiculata [L.] Walp.) fruit exhibits the anatomical potential for reversible xylem flow between seeds, pod, and parent plant. Feeding of cut shoots with the apoplast marker acid fuchsin showed that fruits imported regularly via xylem at night, less frequently in early morning, and only rarely in the afternoon. The dye never entered seeds or inner dorsal pod strands connecting directly to seeds. Root feeding (early morning) of intact plants with 32PO4 or 3H2O rapidly (20 min) labeled pod walls but not seeds, consistent with uptake through xylem. Weak subsequent (4 hours) labeling of seeds suggested slow secondary exchange of label with the phloem stream to the fruit. Vein flap feeding of subtending leaves with [14C]sucrose, 3H2O, and 32PO4 labeled pod and seed intensely, indicating mass flow in phloem to the fruit. Over 90% of the 14C and 3H of fruit cryopuncture phloem sap was as sucrose and water, respectively. Specific 3H activities of transpired water collected from fruits and peduncles were assayed over 4 days after feeding 3H2O to roots, via leaf flaps, or directly to fruits. The data indicated that fruits transpired relatively less xylem-derived (apoplastic) water than did peduncles, that fruit and peduncle relied more heavily on phloem-derived (symplastic) water for transpiration in the day than at night, and that water diffusing back from the fruit was utilized in peduncle transpiration, especially during the day. The data collectively support the hypothesis of a diurnally reversing xylem flow between developing fruit and plant.  相似文献   

8.
We characterized differences in carbon isotopic content (δ13C) and sugar concentrations in phloem exudates from Eucalyptus globulus (Labill) plantations across a rainfall gradient in south‐western Australia. Phloem sap δ13C and sugar concentrations varied with season and annual rainfall. Annual bole growth was negatively related to phloem sap δ13C during summer, suggesting a water limitation, yet was positively related in winter. We conclude that when water is abundant, variations in carboxylation rates become significant to overall growth. Concentrations of sucrose in phloem sap varied across sites by up to 600 mm, and raffinose by 300 mm . These compounds play significant roles in maintaining osmotic balance and facilitating carbon movement into the phloem, and their relative abundances contribute strongly to overall δ13C of phloem sap. Taken together, the δ13C and concentrations of specific sugars in phloem sap provide significant insights to functions supporting growth at the tree, site and landscape scale.  相似文献   

9.
Understanding ecosystem water fluxes has gained increasing attention, as climate scenarios predict a drier environment for many parts of the world. Evaporative enrichment of (18)O (Delta(18)O) of leaf water and subsequent enrichment of plant organic matter can be used to characterize environmental and physiological factors that control evaporation, based on a recently established mechanistic model. In a Pinus sylvestris forest, we measured the dynamics of oxygen isotopic composition (delta(18)O) every 6 h for 4 d in atmospheric water vapour, xylem sap, leaf water and water-soluble organic matter in current (N) and previous year (N-1) needles, phloem sap, together with leaf gas exchange for pooled N and N-1 needles, and relevant micrometeorological variables. Leaf water delta(18)O showed strong diel periodicity, while delta(18)O in atmospheric water vapour and in xylem sap showed little variation. The Delta(18)O was consistently lower for N than for N-1 needles, possibly related to phenological stage. Modelled leaf water Delta(18)O showed good agreement with measured values when applying a non-steady state evaporative enrichment model including a Péclet effect. We determined the time lags between delta(18)O signals from leaf water to water-soluble foliar organic matter and to phloem sap at different locations down the trunk, which clearly demonstrated the relevance of considering these time-lag effects for carbon transport, source-sink and carbon flux partitioning studies.  相似文献   

10.
Phloem loading in peach: Symplastic or apoplastic?   总被引:2,自引:0,他引:2  
Sorbitol and sucrose are the two main soluble carbohydrates in mature peach leaves. Both are translocated in the phloem, in peach as in other rosaceous trees. The respective role of these two soluble carbohydrates in the leaf carbon budget, and their phloem loading pathway, remain poorly documented. Though many studies have been carried out on the compartmentation and export of sucrose in sucrose-transporting species, far less is known about sorbitol in species transporting both sucrose and sorbitol. Sorbitol and sucrose concentrations were measured in several tissues and in sap, in 2-month-old peach (Prunus persica L. Batsch) seedlings, i.e. leaf blade, leaf main vein, petiole, xylem sap collected using a pressure bomb, and phloem sap collected by aphid stylets. The sorbitol to sucrose molar ratio depended on the tissue or sap, the highest value (about 7) found in the leaf main vein. Sorbitol concentration in the phloem sap was about 560 mM, whereas that of sucrose was about 140 mM. The lowest sorbitol and sucrose concentrations were observed in xylem sap collected from the shoot. The volume of the leaf apoplast, estimated by infiltration with 3H-inulin, represented about 17% of the leaf blade water content. This volume was used to calculate a global intracellular concentration for each carbohydrate in the leaf blade. Following these simplifying assumptions, the calculated concentration gradient between the leaf's intracellular compartment and phloem sap is nil for sorbitol and could thus allow for the symplastic loading of the phloem of this alditol. However, infiltration of 14C-labelled source leaves with 2 mMp-chloromercuribenzenesulfonic acid (PC-MBS), a potent inhibitor of the sucrose carrier responsible for phloem loading in sucrose-transporting plants, had a significant effect on the exudation of both labelled sucrose and sorbitol from the phloem. Therefore, in peach, which is a putative symplastic loader according to minor vein anatomy and sorbitol concentration gradients, apoplastic loading may predominate.  相似文献   

11.
Deuterium depletions between stem water and source water have been observed in coastal halophyte plants and in multiple species under greenhouse conditions. However, the location(s) of the isotope fractionation is not clear yet and it is uncertain whether deuterium fractionation appears in other natural environments. In this study, through two extensive field campaigns utilizing a common dryland riparian tree species Populus euphratica Oliv., we showed that no significant δ18O differences were found between water source and various plant components, in accord with previous studies. We also found that no deuterium fractionation occurred during P. euphratica water uptake by comparing the deuterium composition (δD) of groundwater and xylem sap. However, remarkable δD differences (up to 26.4‰) between xylem sap and twig water, root water and core water provided direct evidence that deuterium fractionation occurred between xylem sap and root or stem tissue water. This study indicates that deuterium fractionation could be a common phenomenon in drylands, which has important implications in plant water source identification, palaeoclimate reconstruction based on wood cellulose and evapotranspiration partitioning using δD of stem water.  相似文献   

12.
A new method for simultaneously quantifying rates of flow in xylem and phloem using the FLASH imaging capabilities of nuclear magnetic resonance (NMR) spectrometry was applied in this study. The method has a time resolution of up to 4 min (for the xylem) and was used to measure the velocity of flows in phloem and xylem for periods of several hours to days. For the first time, diurnal time course measurements of flow velocities and apparent volume flows in phloem and xylem in the hypocotyl of 40‐d‐old Ricinus communis L were obtained. Additional data on gas exchange and the chemical composition of leaves, xylem and phloem sap were used to assess the role of leaves as sinks for xylem sap and sources for phloem. The velocity in the phloem (0·250 ± 0·004 mm s?1) was constant over a full day and not notably affected by the light/dark cycle. Sucrose was loaded into the phloem and transported at night, owing to degradation of starch accumulated during the day. Concentrations of solutes in the phloem were generally less during the night than during the day but varied little within either the day or night. In contrast to the phloem, flow velocities in the xylem were about 1·6‐fold higher in the light (0·401 ± 0·004 mm s?1) than in the dark (0·255 ± 0·003 mm s?1) and volume flow varied commensurately. Larger delays were observed in changes to xylem flow velocity with variation in light than in gas exchange. The relative rates of solute transport during day and night were estimated on the basis of relative flow and solute concentrations in xylem and phloem. In general, changes in relative flow rates were compensated for by changes in solute concentration during the daily light/dark cycle. However, the major solutes (K+, NO3?) varied appreciably in relative concentrations. Hence the regulation of loading into transport systems seems to be more important to the overall process of solute transport than do changes in mass flow. Due to transport behaviour, the chemical composition of leaves varied during the day only with regard to starch and soluble carbohydrates.  相似文献   

13.
Polyamine content and enzyme activities in the biosynthetic and degradative pathways of polyamine metabolism were investigated in sieve-tube sap, xylem sap and tissues of seedlings and adult plants of Ricinus communis L. Polyamines were present in tissues and translocation fluids of both seedlings and adult plants in relatively high amounts. Only free polyamines were translocated through the plant, as indicated by the finding that only the free form was detected in the phloem and the xylem sap. Removal of the endosperm increased the polyamine content in the sieve-tube exudate of seedlings. The level and pattern of polyamines in tissue of adult leaves changed during leaf age, but not, however, in the sieve-tube sap. Xylem sap was relatively poor in polyamines. Polyamine loading in the phloem was demonstrated by incubating cotyledons with [14O]putrescine and several unlabelled polyamines. Feeding cotyledons with cadaverine and spermidine led to a decrease in the level of putrescine in sieve-tube sap, indicating a competitive effect. Comparison of polyamine content in the tissue and export rate showed that the export would deplete the leaves of polyamines within 1–3 d, if they were not replenished by biosynthesis. Polyamine biosynthesis in Ricinus proceeds mostly via arginine decarboxylase, which in vitro is 100-fold more active than ornithine decarboxylase. The highest arginine decarboxylase, ornithine decarboxylase and diamine oxidase activities were detected in cotyledons, while in sieve-tube sap only a slight arginine decarboxylase activity was found. Received: 18 March 1997 / Accepted: 20 August 1997  相似文献   

14.
The study was conducted in order to determine whether water stress affects the accumulation of dry matter in tomato fruits similarly to salinity, and whether the increase in fruit dry matter content is solely a result of the decrease in water content. Although the rate of water transport to tomato fruits decreased throughout the entire season in saline water irrigated plants, accumulation rates of dry matter increased significantly. Phloem water transport contributed 80–85% of the total water transport in the control and water-stressed plants, and over 90% under salinity. The concentration of organic compounds in the phloem sap was increased by 40% by salinity. The rate of ions transported via the xylem was also significantly increased by salinity, but their contribution to fruit osmotic adjustment was less. The rate of fruit transpiration was also markedly reduced by salinity. Water stress also decreased the rate of water transport to the tomato fruit and increased the rate of dry matter accumulation, but much less than salinity. The similar changes, 10–15%, indicate that the rise in dry matter accumulation was a result of the decrease in water transport. Other parameters such as fruit transpiration rates, phloem and xylem sap concentration, relative transport via phloem and xylem, solutes contributing to osmotic adjustment of fruits and leaves, were only slightly affected by water stress. The smaller response of these parameters to water stress as compared to salinity could not be attributed to milder stress intensity, as leaf water potential was found to be more negative. Measuring fruit growth of girdled trusses, in which phloem flow was inactive, and comparing it with ungirdled trusses validated the mechanistic model. The relative transport of girdled as compared to ungirdled fruits resembled the calculated values of xylem transport.  相似文献   

15.
The oxygen isotope composition in leaf water and organic compounds in different plant tissues is useful for assessing the physiological performance of plants in their environment, but more information is needed on Delta(18)O variation during a diel course. Here, we assessed Delta(18)O of the organic matter in leaves, phloem and xylem in stem segments, and fine roots of Ricinus communis during a full diel cycle. Enrichment of newly assimilated organic matter in equilibrium with leaf water was calculated by applying a nonsteady-state evaporative enrichment model. During the light period, Delta(18)O of the water soluble organic matter pool in leaves and phloem could be explained by a 27 per thousand enrichment compared with leaf water enrichment. Leaf water enrichment influenced Delta(18)O of phloem organic matter during the night via daytime starch synthesis and night-time starch remobilization. Phloem transport did not affect Delta(18)O of phloem organic matter. Diel variation in Delta(18)O in organic matter pools can be modeled, and oxygen isotopic information is not biased during transport through the plant. These findings will aid field studies that characterize environmental influences on plant water balance using Delta(18)O in phloem organic matter or tree rings.  相似文献   

16.
Non-climatic variations in the oxygen isotopic compositions of plants   总被引:4,自引:0,他引:4  
The 18O content of leaf water strongly influences the 18O contents of atmospheric CO2 and O2. The 18O signatures of these atmospheric gases, in turn, emerge as important indicators of large-scale gas exchange processes. Better understanding of the factors that influence the isotopic composition of leaf water is still required, however, for the quantitative utilization of these tracers. The 18O enrichment of leaf water relative to local meteoric water, is known to reflect climatic conditions. Less is known about the extent variations in the 18O content of leaf water are influenced by nonclimatic, species-specific characteristics. In a collection of 90 plant species from all continents grown under the same climatic conditions in the Jerusalem Botanical Garden we observed variations of about 9‰ in the δ18O values of stem water, δs, and of about 14‰ in the mid-day δ18O enrichment of bulk leaf water, δLW–δs. Differences between δ18O values predicted by a conventional evaporation model, δM, and δLW ranged between – 3.3‰ and + 11.8‰. The δ18O values of water in the chloroplasts (δch) in leaves of 10 selected plants were estimated from on-line CO2 discrimination measurements. Although much uncertainty is still involved in these estimates, the results indicated that δch can significantly deviate from δM in species with high leaf peclet number. The δ18O values of bulk leaf water significantly correlated with δ18O values of leaf cellulose (directly) and with instantaneous water use efficiency (A/E, inversely). Differences in isotopic characteristics among conventionally defined vegetation types were not significant, except for conifers that significantly differed from shrubs in δ18O and δ13C values of cellulose and in their peclet numbers, and from deciduous woodland species in their δ18O and δ13C values of cellulose. The results indicated that predictions of the δ18O values of leaf water (δLW, δM and δch) could be improved by considering plant species-specific characteristics.  相似文献   

17.
After root uptake, nitrate is effluxed back to the medium, assimilated locally, or translocated to shoots. Rooted black cottonwood (Populus trichocarpa) scions were supplied with a NO3-based (0.5 mM) nutrient medium of known isotopic composition (δ15N), and xylem sap was collected by pressure bombing. To establish a sampling protocol, sap was collected from lower and upper stem sections at 0.1–0.2 MPa above the balancing pressure, and after increasing the pressure by a further 0.5 MPa. Xylem sap from upper stem sections was partially diluted at higher pressure. Further analysis was restricted to sap obtained from intact shoots at low pressure. Total-, NO3-N and, by difference, organic-N concentrations ranged from 6.1–11.0, 1.2–2.4, and 4.6–9.4 mM, while discrimination relative to the nutrient medium was −6.3 to 0.5‰, −23.3 to −11.5‰ and − 1.3 to 4.9‰, respectively. There was diurnal variation in δ15N of total- and organic-N, but not NO3. The difference in δ15N between xylem NO3 and organic-N suggests that discrimination by nitrate reductase is near 25.1 ± 1.6‰. When this value was used in an isotope mass balance model, the predicted xylem sap NO3-N to total-N ratio closely matched direct measurement.  相似文献   

18.
Effects of drought on nutrient and ABA transport in Ricinus communis   总被引:1,自引:1,他引:0  
We studied the effects of variations of water flux through the plant, of diurnal variation of water flux, and of variation of vapour pressure deficit at the leaf on compensation pressure in the Passioura-type pressure chamber, the composition of the xylem sap and leaf conductance in Ricinus communis. The diurnal pattern of compensation pressure showed stress relaxation during the night hours, while stress increased during the day, when water limitation increased. Thus compensation pressure was a good measure of the momentary water status of the root throughout the day and during drought. The bulk soil water content at which predawn compensation pressure and abscisic acid concentration in the xylem sap increased and leaf conductance decreased, was high when the water usage of the plant was high. For all xylem sap constituents analysed, variations in concentrations during the day were larger than changes in mean concentrations with drought. Mean concentrations of phosphate and the pH of the xylem sap declined with drought, while nitrate concentration remained constant. When the measurement leaf was exposed to a different VPD from the rest of the plant, leaf conductance declined by 400mmol m?2 s?1 when compensation pressure increased by 1 MPa in all treatments. The compensation pressure needed to keep the shoot turgid, leaf conductance and the abscisic acid concentration in the xylem were linearly related. This was also the case when the highly dynamic development of stress was taken into account.  相似文献   

19.
Temporal variations in the δ18 oxygen (δ18O) content of water transpired by leaves during a simulated diurnal cycle fluctuated around the δ18O content of the source water. Reconstructed variations in the δ18O values of leaf water differed markedly from those predicted by conventional models. Even when transpiring leaves were maintained under constant conditions for at least 3 h, strict isotopic steady-state conditions of leaf water (equality of the 18O/16O ratios in the input and transpired water) were rarely attained in a variety of plant species (Citrus reticu-lata, Citrus paradisi, Gossypium hirsutum, Helianthus annuns, Musa musaceae and Nicotinia tabacum). Isotopic analysis of water transpired by leaves indicated that leaves approach the isotopic steady state in two stages. The first stage takes 10 to 35 min (with a rate of change of about 3–3%h?1), while in the second stage further approach to the isotopic steady state is asymptotic (with a rate of change of about 0–4% h?1), and under conditions of low transpiration leaves can last for many hours. Substantial spatial isotopic heterogeneity was maintained even when leaves were at or near isotopic steady state. An underlying pattern in this isotopic heterogeneity is often discerned with increasing 18O/16O ratios from base to tip, and from the centre to the edges of the leaves. It is also shown that tissue water along these spatial isotopic gradients, as well as the average leaf water, can have 18O/16O ratios both lower and higher than those predicted by the conventional Craig and Gordon model. We concluded, first, that at any given time during the diurnal cycle of relative humidity the attainment of an isotopic steady state in leaf water cannot be assumed a priori and, secondly, that the isotopic enrichment pattern of leaf water reflects gradual enrichment along the water-flow pathway (e.g. as in a string of pools), rather than a single-step enrichment from source water, as is normally assumed.  相似文献   

20.
Stable carbon isotope signatures are often used as tracers for environmentally driven changes in photosynthetic δ13C discrimination. However, carbon isotope signatures downstream from carboxylation by Rubisco are altered within metabolic pathways, transport and respiratory processes, leading to differences in δ13C between carbon pools along the plant axis and in respired CO2. Little is known about the within-plant variation in δ13C under different environmental conditions or between species. We analyzed spatial, diurnal, and environmental variations in δ13C of water soluble organic matter (δ13CWSOM) of leaves, phloem and roots, as well as dark-respired δ13CO213Cres) in leaves and roots. We selected distinct light environments (forest understory and an open area), seasons (Mediterranean spring and summer drought) and three functionally distinct understory species (two native shrubs—Halimium halimifolium and Rosmarinus officinalis—and a woody invader—Acacia longifolia). Spatial patterns in δ13CWSOM along the plant vertical axis and between respired δ13CO2 and its putative substrate were clearly species specific and the most δ13C-enriched and depleted values were found in δ13C of leaf dark-respired CO2 and phloem sugars, ~?15 and ~?33 ‰, respectively. Comparisons between study sites and seasons revealed that spatial and diurnal patterns were influenced by environmental conditions. Within a species, phloem δ13CWSOM and δ13Cres varied by up to 4 ‰ between seasons and sites. Thus, careful characterization of the magnitude and environmental dependence of apparent post-carboxylation fractionation is needed when using δ13C signatures to trace changes in photosynthetic discrimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号