首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunosuppressive agent rapamycin induces inactivation of p70s6k with no effect on other mitogen-activated kinases. Here we have employed a combination of techniques, including mass spectrometry, to demonstrate that this effect is associated with selective dephosphorylation of three previously unidentified p70s6k phosphorylation sites: T229, T389 and S404. T229 resides at a conserved position in the catalytic domain, whose phosphorylation is essential for the activation of other mitogen-induced kinases. However, the principal target of rapamycin-induced p70s6k inactivation is T389, which is located in an unusual hydrophobic sequence outside the catalytic domain. Mutation of T389 to alanine ablates kinase activity, whereas mutation to glutamic acid confers constitutive kinase activity and rapamycin resistance. The importance of this site and its surrounding motif to kinase function is emphasized by its presence in a large number of protein kinases of the second messenger family and its conservation in putative p70s6k homologues from as distantly related organisms as yeast and plants.  相似文献   

2.
Mitogen-induced activation of p70(s6k) is associated with the phosphorylation of specific sites which are negatively affected by the immunosuppressant rapamycin, the fungal metabolite wortmannin, and the methylxanthine SQ20006. Recent reports have focused on the role of the amino terminus of the p85(s6k) isoform in mediating kinase activity, with the observation that amino-terminal truncation mutants are activated in the presence of rapamycin while retaining their sensitivity to wortmannin. Here we show that the effects of previously described amino- and carboxy-terminal truncations on kinase activity are ultimately reflected in the phosphorylation state of the enzyme. Mutation of the principal rapamycin-targeted phosphorylation site, T-389, to an acidic residue generates a form of the kinase which is as resistant to wortmannin or SQ20006 as it is to rapamycin, consistent with the previous observation that T-389 was a common target of all three inhibitors. Truncation of the first 54 residues of the amino terminus blocks the serum-induced phosphorylation of three rapamycin-sensitive sites, T-229 in the activation loop and T-389 and S-404 in the linker region. This correlates with a severe reduction in the ability of the kinase to be activated by serum. However, loss of mitogen activation conferred by the removal of the amino terminus is reversed by additional truncation of the carboxy-terminal domain, with the resulting mutant demonstrating phosphorylation of the remaining two rapamycin-sensitive sites, T-229 and T-389. In this double-truncation mutant, phosphorylation of T-229 occurs in the basal state, whereas mitogen stimulation is required to induce acute upregulation of T-389 phosphorylation. The phosphorylation of both sites proceeds unimpaired in the presence of rapamycin, indicating that the kinases responsible for the phosphorylation of these sites are not inhibited by the macrolide. In contrast, activation of the double-truncation mutant is blocked in the presence of wortmannin or SQ20006, and these agents completely block the phosphorylation of T-389 while having only a marginal effect on T-229 phosphorylation. When the T-389 site is mutated to an acidic residue in the double-truncation background, the activation of the resulting mutant is insensitive to the wortmannin and SQ20006 block, but interestingly, the mutant is activated to a significantly greater level than a control in the presence of rapamycin. These data are consistent with the hypothesis that T-389 is the principal regulatory phosphorylation site, which, in combination with hyperphosphorylation of the autoinhibitory domain S/TP sites, is acutely regulated by external effectors, whereas T-229 phosphorylation is regulated primarily by internal mechanisms.  相似文献   

3.
We have previously demonstrated that concomitant activation of receptor tyrosine kinases and certain G protein-coupled receptors (GPCRs) can promote a synergistic increase in the rate of airway smooth muscle cell (ASM) proliferation. Here we clarify the role of p70S6 kinase (p70S6K) as an integrator of receptor tyrosine kinase and GPCR signaling that augments ASM DNA synthesis by demonstrating that specific p70S6K phosphorylation sites receive distinct regulatory input from GPCRs that promotes sustained kinase activity critical to mitogenesis. Prolonged stimulation of ASM cells with EGF and thrombin induced a greater than additive effect in levels of p70S6K phosphorylated at residue T389, whereas a significant but more modest increase in the level of T229 and T421/S424 phosphorylation was also observed. The augmenting effects of thrombin could be dissociated from p42/p44 MAPK activation, as selective inhibition of thrombin-stimulated p42/p44 failed to alter the profile of cooperative p70S6K T389 phosphorylation, p70S6K kinase activity, or ASM [(3)H]thymidine incorporation. Thrombin stimulated a sustained increase in the level of Akt phosphorylation and also augmented EGF-stimulated Akt phosphorylation. The cooperative effects of thrombin on Akt/p70S6K phosphorylation and [(3)H]thymidine incorporation were all attenuated by heterologous expression of Gbetagamma sequestrants. These data suggest that PI3K-dependent T389/T229 phosphorylation is limiting in late-phase p70S6K activation by EGF and contributes to the cooperative effect of GPCRs on p70S6K activity and cell growth.  相似文献   

4.
5.
The protein kinase p70 S6K1 is regulated in response to cytokines, nutrients and growth factors, and plays an important role in the development of a variety of human diseases. Mammalian target of rapamycin (mTOR) is known to phosphorylate and thereby activate p70 S6K1. p70 S6K1 phosphorylates different cytoplasmic and nuclear substrates involved in the regulation of protein synthesis, cell cycle, cell growth and survival. Recently, we have shown that mTOR-mediated phosphorylation of p70 S6K1 at T389 also regulates its nucleocytoplasmic localization. Since this phosphorylation is associated with its kinase activity the question whether p70 S6K1 phosphorylation or kinase activity is essential for its proper localization remained elusive. Recently, the chemical compound PF-4708671 has been demonstrated to block p70 S6K1 kinase activity while inducing its phosphorylation at T389. This potential of PF-4708671 to separate p70 S6K1 activity from its T389 phosphorylation allowed us to demonstrate that the proper nucleocytoplasmic localization of this kinase depends on its mTOR-mediated phosphorylation but not on its kinase activity. These findings provide important insights into the regulation of p70 S6K1 and allow a more detailed understanding of subcellular enzyme localization processes.  相似文献   

6.
Phosphorylation of 40S ribosomal protein S6 is regulated in part by the mitogen-activated p70 S6 kinase (p70s6k). Following the addition of IL-2 to the IL-2 dependent human cell line Kit225, or mitogenic activation of resting human T cells, a rapid phosphorylation of p70s6k was observed by immunoblotting. Rapamycin (RAP), a potent suppressor of T-cell proliferative responses, markedly inhibited the phosphorylation of p70s6k induced by IL-2 in Kit225 cells or by the mitogens added to resting T cells. Other immunosuppressants such as cyclosporin A or an FK506 analogue were without effect. Moreover, the effect of RAP was restricted to p70s6k; it did not inhibit the phosphorylation of p90rsk, another kinase which utilizes the S6 protein as a substrate. These data indicate for the first time that RAP may target the pathway leading to p70s6k phosphorylation during human T-cell proliferation.  相似文献   

7.
A critical step in S6 kinase 1 (S6K1) activation is Thr(229) phosphorylation in the activation loop by the phosphoinositide-dependent protein kinase (PDK1). Thr(229) phosphorylation requires prior phosphorylation of the Ser/Thr-Pro sites in the autoinhibitory domain and Thr(389) in the linker domain, consistent with PDK1 more effectively catalyzing Thr(229) phosphorylation in a variant harboring acidic residues in these positions (S6K1-E389D(3)E). S6K1-E389D(3)E has high basal activity and exhibits partial resistance to rapamycin and wortmannin, and its activity can be further augmented by mitogens, effects presumably mediated by Thr(229) phosphorylation. However, PDK1-induced Thr(229) phosphorylation is reported to be constitutive rather than phosphatidylinositide 3,4,5-trisphosphate-dependent, suggesting that S6K1-E389D(3)E activity is mediated through a distinct site. Here we use phosphospecific antibodies to show that Thr(229) is fully phosphorylated in S6K1-E389D(3)E in the absence of mitogens and that regulation of S6K1-E389D(3)E activity by mitogens, rapamycin, or wortmannin parallels Ser(371) phosphorylation. Consistent with this observation, a dominant interfering allele of the mammalian target of rapamycin, mTOR, inhibits mitogen-induced Ser(371) phosphorylation and activation of S6K1-E389D(3)E, whereas wild type mTOR stimulates both responses. Moreover, in vitro mTOR directly phosphorylates Ser(371), and this event modulates Thr(389) phosphorylation by mTOR, compatible with earlier in vivo findings.  相似文献   

8.
BACKGROUND: The p70 S6 kinase, like several other AGC family kinases, requires for activation the concurrent phosphorylation of a site on its activation loop and a site carboxyterminal to the catalytic domain, situated in a hydrophobic motif site FXXFS/TF/Y, e.g.,Thr412 in p70 S6 kinase (alpha 1). Phosphorylation of the former site is catalyzed by PDK1, whereas the kinase responsible for the phosphorylation of the latter site is not known. RESULTS: The major protein kinase that is active on the p70 S6 kinase hydrophobic regulatory site, Thr412, was purified from rat liver and identified as the NIMA-related kinases NEK6 and NEK7. Recombinant NEK6 phosphorylates p70 S6 kinase at Thr412 and other sites and activates the p70 S6 kinase in vitro and in vivo, in a manner synergistic with PDK1. Kinase-inactive NEK6 interferes with insulin activation of p70 S6 kinase. The activity of recombinant NEK6 is dependent on its phosphorylation, but NEK6 activity is not regulated by PDK1 and is only modestly responsive to insulin and PI-3 kinase inhibitors. CONCLUSION: NEK6 and probably NEK7 are novel candidate physiologic regulators of the p70 S6 kinase.  相似文献   

9.
p70 ribosomal S6 kinase (S6K1), a major substrate of the mammalian target of rapamycin (mTOR) kinase, regulates diverse cellular processes including protein synthesis, cell growth, and survival. Although it is well known that the activity of S6K1 is tightly coupled to its phosphorylation status, the regulation of S6K1 activity by other post-translational modifications such as acetylation has not been well understood. Here we show that the acetylation of the C-terminal region (CTR) of S6K1 blocks mTORC1-dependent Thr-389 phosphorylation, an essential phosphorylation site for S6K1 activity. The acetylation of the CTR of S6K1 is inhibited by the class III histone deacetylases, SIRT1 and SIRT2. An S6K1 mutant lacking acetylation sites in its CTR shows enhanced Thr-389 phosphorylation and kinase activity, whereas the acetylation-mimetic S6K1 mutant exhibits decreased Thr-389 phosphorylation and kinase activity. Interestingly, relative to the acetylation-mimetic S6K1 mutant, the acetylation-defective mutant displays higher affinity toward Raptor, an essential scaffolding component of mTORC1 that recruits mTORC1 substrates. These observations indicate that sirtuin-mediated regulation of S6K1 acetylation is an additional important regulatory modification that impinges on the mechanisms underlying mTORC1-dependent S6K1 activation.  相似文献   

10.
This study characterizes the insulin-activated serine/threonine protein kinases in H4 hepatoma cells active on a 37-residue synthetic peptide (called the SKAIPS peptide) corresponding to a putative autoinhibitory domain in the carboxyl-terminal tail of the p70 S6 kinase as well as on recombinant p70 S6 kinase. Three peaks of insulin-stimulated protein kinase active on both these substrates are identified as two (possibly three) isoforms of the 40-45-kDa erk/microtubule-associated protein (MAP)-2 kinase family and a 150-kDa form of cdc2. Although distinguishable in their substrate specificity, these protein kinases together with the p54 MAP-2 kinase share a major common specificity determinant reflected in the SKAIPS peptide: the requirement for a proline residue immediately carboxyl-terminal to the site of Ser/Thr phosphorylation. In addition, however, at least one peak of insulin-stimulated protein kinase active on recombinant p70, but not on the SKAIPS peptide, is present although not yet identified. MFP/cdc2 phosphorylates both rat liver p70 S6 kinase and recombinant p70 S6 kinase exclusively at a set of Ser/Thr residues within the putative autoinhibitory (SKAIPS peptide) domain. erk/MAP kinase does not phosphorylate rat liver p70 S6 kinase, but readily phosphorylates recombinant p70 S6 kinase at sites both within and in addition to those encompassed by the SKAIPS peptide sequences. Although the tryptic 32P-peptides bearing the cdc2 and erk/MAP kinase phosphorylation sites co-migrate with a subset of the sites phosphorylated in situ in insulin-stimulated cells, phosphorylation of the p70 S6 kinase by these proline-directed protein kinases in vitro does not reproducibly activate p70 S6 kinase activity. Thus, one or more erk/MAP kinases and cdc2 are likely to participate in the insulin-induced phosphorylation of the p70 S6 kinase. In addition to these kinases, however, phosphorylation of the p70 S6 kinase by other as yet unidentified protein kinases is necessary to recapitulate the multisite phosphorylation required for activation of the p70 S6 kinase.  相似文献   

11.
H Shima  M Pende  Y Chen  S Fumagalli  G Thomas    S C Kozma 《The EMBO journal》1998,17(22):6649-6659
Recent studies have shown that the p70(s6k)/p85(s6k) signaling pathway plays a critical role in cell growth by modulating the translation of a family of mRNAs termed 5'TOPs, which encode components of the protein synthetic apparatus. Here we demonstrate that homozygous disruption of the p70(s6k)/p85(s6k) gene does not affect viability or fertility of mice, but that it has a significant effect on animal growth, especially during embryogenesis. Surprisingly, S6 phosphorylation in liver or in fibroblasts from p70(s6k)/p85(s6k)-deficient mice proceeds normally in response to mitogen stimulation. Furthermore, serum-induced S6 phosphorylation and translational up-regulation of 5'TOP mRNAs were equally sensitive to the inhibitory effects of rapamycin in mouse embryo fibroblasts derived from p70(s6k)/p85(s6k)-deficient and wild-type mice. A search of public databases identified a novel p70(s6k)/p85(s6k) homolog which contains the same regulatory motifs and phosphorylation sites known to control kinase activity. This newly identified gene product, termed S6K2, is ubiquitously expressed and displays both mitogen-dependent and rapamycin-sensitive S6 kinase activity. More striking, in p70(s6k)/p85(s6k)-deficient mice, the S6K2 gene is up-regulated in all tissues examined, especially in thymus, a main target of rapamycin action. The finding of a new S6 kinase gene, which can partly compensate for p70(s6k)/p85(s6k) function, underscores the importance of S6K function in cell growth.  相似文献   

12.
The aim of the study was to investigate the effect of resistance exercise alone or in combination with oral intake of branched-chain amino acids (BCAA) on phosphorylation of the 70-kDa S6 protein kinase (p70(S6k)) and mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK1/2), and p38 MAPK in skeletal muscle. Seven male subjects performed one session of quadriceps muscle resistance training (4 x 10 repetitions at 80% of one repetition maximum) on two occasions. In a randomized order, double-blind, crossover test, subjects ingested a solution of BCAA or placebo during and after exercise. Ingestion of BCAA increased plasma concentrations of isoleucine, leucine, and valine during exercise and throughout recovery after exercise (2 h postexercise), whereas no change was noted after the placebo trial. Resistance exercise led to a robust increase in p70(S6k) phosphorylation at Ser(424) and/or Thr(421), which persisted 1 and 2 h after exercise. BCAA ingestion further enhanced p70(S6k) phosphorylation 3.5-fold during recovery. p70(S6k) phosphorylation at Thr(389) was unaltered directly after resistance exercise. However, during recovery, Thr(389) phosphorylation was profoundly increased, but only during the BCAA trial. Furthermore, phosphorylation of the ribosomal protein S6 was also increased in the recovery period only during the BCAA trial. Exercise led to a marked increase in ERK1/2 and p38 MAPK phosphorylation, which was completely suppressed upon recovery and unaltered by BCAA. In conclusion, BCAA, ingested during and after resistance exercise, mediate signal transduction through p70(S6k) in skeletal muscle.  相似文献   

13.
Zhou XW  Tanila H  Pei JJ 《FEBS letters》2008,582(2):159-164
This study set out to search for a link between overproduction of Abeta and p70S6 kinase (p70S6K) phosphorylation/activation. Results showed that levels of p-p70S6K at T421/S424 and T389 are significantly increased in mouse N2a neuroblastoma cells carrying human APP with Swedish mutation (APPswe), and in transgenic APPswe/PS1 (A246E) mice as compared with respective controls, corresponding to the increase of tau phosphorylation at S262. This parallel increase in p70S6K activation and tau phosphorylation could be demonstrated by treating wild-type N2a cells with Abeta25-35. Our results suggest that the Abeta deposition in senile plaques in Alzheimer disease brains might be a primary event that activates p70S6K and phosphorylates tau at S262, resulting in microtubule disruption.  相似文献   

14.
Phosphorylation of the highly conserved hydrophobic motif site in AGC kinases is necessary for phosphotransferase activity. Phosphorylation of this motif (FLGFT389Y) in p70 S6 kinase (S6K1) is both rapamycin- and wortmannin-sensitive, suggesting a role for both mammalian target of rapamycin- and phosphatidylinositol 3-kinase-dependent pathways. We report here that co-expression of phosphoinositide-dependent kinase-1 (PDK1) and the phosphatidylinositol 3-kinase-regulated atypical protein kinase Czeta cooperate to increase both phosphorylation of the hydrophobic motif site Thr(389), as well as the activation loop site Thr(229). Interestingly, although PDK1 alone can promote an increase in Thr(389) phosphorylation in both wild type S6K1 and a kinase-inactive mutant of S6K1, the cooperative effect between PDK1 and protein kinase Czeta required S6K1 activity. Furthermore, Akt, another phosphatidylinositol 3-kinase effector and regulator of S6K1, also increased Thr(389) phosphorylation in a S6K1 activity-dependent manner. Consistent with this, epidermal growth factor-induced Thr(389) phosphorylation in wild type S6K1 persisted for up to 120 min, whereas kinase-inactive mutants of S6K1 displayed only a reduced and transient increase in Thr(389) phosphorylation. We conclude that S6K1 activity is required for maximal Thr(389) phosphorylation by mitogens and by multiple phosphatidylinositol 3-kinase-dependent inputs including PDK1, PKCzeta, and Akt, and we propose that autophosphorylation is an important regulatory mechanism for phosphorylation of the hydrophobic motif Thr(389) site in S6K1.  相似文献   

15.
Phosphatidylinositil-3 kinase (PI3K) is a heterodimer of catalytic and regulatory subunits. It is involved in various signaling pathways and key functions of the cells. The present study investigated the role of PI3K in vanadate-induced alteration in cell cycle regulation in C141 mouse epidermal cells. Vanadate caused a time- and dose-dependent increase in PI3K activity and phosphorylation of p70 S6 kinase (p70S6K) at Thr421/Ser424 and Thr389 sites. The phosphorylation at these sites was inhibited by PI3K inhibitor, LY294002, and p70S6K mutation. Vanadate promoted S phase entry and this promotion was inhibited by LY294002 and rapmycin, a p70S6K inhibitor. Vanadate-induced enhancement in S phase entry was also inhibited in transfection with dominant negative p70S6K mutant cells. The results obtained show that vanadate is able to increase PI3K activity through phosphorylation. PI3K activated p70S6K, which phosphated protein S6, and promoted S phase entry.  相似文献   

16.
The mammalian target of rapamycin (mTOR) is a Ser/Thr (S/T) protein kinase, which controls mRNA translation initiation by modulating phosphorylation of the translational regulators PHAS-I and p70(S6K). Here we show that in vitro mTOR is able to phosphorylate these two regulators at comparable rates. Both (S/T)P sites, such as Thr36, Thr45, and Thr69 in PHAS-I and the h(S/T)h site (where h is a hydrophobic amino acid) Thr389 in p70(S6K), were phosphorylated. Rapamycin-FKBP12 inhibited mTOR activity. Surprisingly, the extent of inhibition depended on the substrate. Moreover, mutating Ser2035 in the rapamycin-binding domain (FRB) not only decreased rapamycin sensitivity as expected but also dramatically affected the sites phosphorylated by mTOR. The results demonstrate that mutations in Ser2035 are not silent with respect to mTOR activity and implicate the FRB in substrate recognition. The findings also impose new limitations on interpreting results from experiments in which rapamycin and/or rapamycin-resistant forms of mTOR are used to investigate mTOR function in cells.  相似文献   

17.
The maturation and maintenance of dendritic spines depends on neuronal activity and protein synthesis. One potential mechanism involves mammalian target of rapamycin, which promotes protein synthesis through phosphorylation of eIF4E-binding protein and p70 ribosomal S6 kinase 1 (S6K). Upon extracellular stimulation, mammalian target of rapamycin phosphorylates S6K at Thr-389. S6K also undergoes phosphorylation at other sites, including four serine residues in the autoinhibitory domain. Despite extensive biochemical studies, the importance of phosphorylation in the autoinhibitory domain in S6K function remains unresolved, and its role has not been explored in the cellular context. Here we demonstrated that S6K in neuron was phosphorylated at Ser-411 within the autoinhibitory domain by cyclin-dependent kinase 5. Ser-411 phosphorylation was regulated by neuronal activity and brain-derived neurotrophic factor (BDNF). Knockdown of S6K in hippocampal neurons by RNAi led to loss of dendritic spines, an effect that mimics neuronal activity blockade by tetrodotoxin. Notably, coexpression of wild type S6K, but not the phospho-deficient S411A mutant, could rescue the spine defects. These findings reveal the importance of cyclin-dependent kinase 5-mediated phosphorylation of S6K at Ser-411 in spine morphogenesis driven by BDNF and neuronal activity.  相似文献   

18.
The FKBP12-rapamycin associated protein (FRAP, also RAFT, mTOR) belongs to a family of phosphatidylinositol kinase-related kinases. These kinases mediate cellular responses to stresses such as DNA damage and nutrient deprivation in a variety of eukaryotes from yeast to humans. FRAP regulates G(1) cell cycle progression and translation initiation in part by controlling the phosphorylation states of a number of translational and cell cycle regulators. Although FRAP is known to be phosphorylated in vivo and to phosphorylate several proteins (including itself) in vitro, FRAP's phosphorylation sites and substrate specificity are unknown. We report here the identification of a FRAP autophosphorylation site. This site, Ser-2481, is located in a hydrophobic region near the conserved carboxyl-terminal FRAP tail. We demonstrate that the COOH-terminal tail is required for FRAP kinase activity and for signaling to the translational regulator p70(s6k) (ribosomal subunit S6 kinase). Phosphorylation of wild-type but not kinase-inactive FRAP occurs at Ser-2481 in vivo, suggesting that Ser-2481 phosphorylation is a marker of FRAP autokinase activity in cells. FRAP autophosphorylation is blocked completely by wortmannin treatment but not by rapamycin treatment, amino acid deprivation, or serum withdrawal, treatments that lead to acute dephosphorylation of eIF4E-binding protein (4E-BP1) and p70(s6k). Ser-2481 phosphorylation increases slightly upon c-Akt/PKB activation and dramatically upon calyculin A treatment of T-cells. These results suggest that FRAP-responsive dephosphorylation of 4E-BP1 and p70(s6k) occurs through a mechanism other than inhibition of intrinsic FRAP kinase activity.  相似文献   

19.
Endogenous IGF-I regulates growth of human intestinal smooth muscle cells by jointly activating phosphatidylinositol 3-kinase (PI3K) and ERK1/2. The 70-kDa ribosomal S6 kinase (p70S6 kinase) is a key regulator of cell growth activated by several independently regulated kinases. The present study characterized the role of p70S6 kinase in IGF-I-induced growth of human intestinal smooth muscle cells and identified the mechanisms of p70S6 kinase activation. IGF-I-induced growth elicited via either the PI3K or ERK1/2 pathway required activation of p70S6 kinase. IGF-I elicited concentration-dependent activation of PI3K, 3-phosphoinositide-dependent kinase-1 (PDK-1), and p70S6 kinase that was sequential and followed similar time courses. IGF-I caused time-dependent and concentration-dependent phosphorylation of p70S6 kinase on Thr(421)/Ser(424), Thr(389), and Thr(229) that paralleled p70S6 kinase activation. p70S6 kinase(Thr(421)/Ser(424)) phosphorylation was PI3K dependent and PDK-1 independent, whereas p70S6 kinase(Thr(389)) and p70S6 kinase(Thr(229)) phosphorylation and p70S6 kinase activation were PI3K dependent and PDK-1 dependent. IGF-I elicited sequential Akt(Ser(308)), Akt(Ser(473)), and mammalian target of rapamycin(Ser(2448)) phosphorylation; however, transfection of muscle cells with kinase-inactive Akt1(K179M) showed that these events were not required for IGF-I to activate p70S6 kinase and stimulate proliferation of human intestinal muscle cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号