首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neutral mononuclear copper complexes with the quinolone antibacterial drug oxolinic acid in the presence or not of a nitrogen donor heterocyclic ligand 1,10-phenanthroline, 2,2'-bipyridine or 2,2'-dipyridylamine have been synthesized and characterized with infrared, UV-visible and electron paramagnetic resonance spectroscopies. The experimental data suggest that oxolinic acid acts as a deprotonated bidentate ligand and is coordinated to the metal ion through the pyridone and one carboxylate oxygen atoms. The crystal structure of (chloro)(1,10-phenanthroline)(oxolinato) copper(II), 2, has been determined with X-ray crystallography. For all complexes a distorted square pyramidal environment around Cu(II) is suggested. The EPR (electron paramagnetic resonance) behavior of 2 in aqueous solutions indicates mixture of dimeric and monomeric species. The investigation of the interaction of the complexes with calf-thymus DNA has been performed with diverse spectroscopic techniques and showed that the complexes are bound to calf-thymus DNA. The antimicrobial activity of the complexes has been tested on three different microorganisms. The complexes show a decreased biological activity in comparison to the free oxolinic acid.  相似文献   

2.
3.
New ternary copper(II) complexes of formulations [Cu(Ph-tsc)B] (B=1,10-phenanthroline, phen (1); dipyridoquinoxaline, dpq (2); dipyridophenazine, dppz (3); Ph-H2tsc, salicylaldehyde-N(4)-phenylthiosemicarbazone) and [Cu(Me-tsc)(phen)] (4, Me-H2tsc, salicylaldehyde-N(4)-methylthiosemicarbazone) are prepared, and their DNA binding and cleavage properties studied. Complex 1 has been characterized by single crystal X-ray crystallography. The molecular structure shows a distorted square pyramidal (4 + 1) geometry of the complex with the dianionic NSO-donor N(4)-phenyl-substituted thiosemicarbazone binding at the basal plane and the NN-donor planar heterocyclic base (phen) displaying axial-equatorial coordination. The one-electron paramagnetic complexes exhibit axial EPR spectra and show a d-d band near 580 nm for the phen and near 720 nm for the dpq, dppz complexes in their electronic spectra in DMF. The complexes show quasireversible cyclic voltammetric response near 0.08 V vs. SCE in DMF-0.1 M TBAP assignable to the Cu(II)/Cu(I) couple. The Ph-tsc complexes display good binding propensity to calf thymus (CT) DNA. They also show oxidative cleavage of supercoiled (SC) pUC19 DNA in dark under aerobic condition in the presence of mercaptopropionic acid. The complexes exhibit light-induced DNA cleavage activity at 312 and 532 nm. Mechanistic investigations reveal DNA minor groove binding for the phen and dpq complexes, and major groove binding for the dppz species. The complexes are cleavage inactive under argon atmosphere. In the ternary structure, the thiosemicarbazones, dpq and dppz act as photosensitizers, while the planar heterocyclic bases are binder to DNA. The mechanistic pathways involved and the role of metal in the DNA cleavage reactions are discussed.  相似文献   

4.
Ternary S-methyl-L-cysteine (SMe-l-cys) copper(II) complexes [Cu(SMe-L-cys)(B)(H(2)O)](X) (1-4), where the heterocyclic base B is 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyridoquinoxaline (dpq, 3) and dipyridophenazine (dppz, 4), and X is ClO(4)(-) (1-3) or NO(3)(-) (4), are prepared and their DNA binding and cleavage properties studied. Complexes 2 and 4 are structurally characterized by X-ray crystallography. Both the crystal structures show distorted square-pyramidal (4+1) CuN(3)O(2) coordination geometry of the complexes in which the N,O-donor S-methyl-L-cysteine and N,N-donor heterocyclic base bind at the basal plane with a water molecule as the axial ligand. In addition, the dppz structure shows the presence of a 1D-chain formed due to covalent linkage of the carboxylate oxygen atom belonging to another molecule at the elongated axial site. The crystal structures show chemically significant non-covalent interactions like hydrogen bonding involving the axial aqua ligand and pi-pi interactions between dppz ligands. The complexes display a d-d band in the range of 605-654 nm in aqueous dimethylformamide (DMF) solution (9:1 v/v). The redox active complexes show quasireversible cyclic voltammetric response near 0.1 V in DMF assignable to the Cu(II)/Cu(I) couple. The complexes show good binding affinity to calf thymus (CT) DNA giving the order: 4 (dppz)>3 (dpq)>2 (phen)>1 (bpy). The intrinsic binding constants, obtained from UV-visible spectroscopic studies, are 1.3x10(4) and 2.15 x 10(4) M(-1) for 3 and 4, respectively. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder distamycin suggest major groove binding propensity for the dppz complex, while the phen and dpq complexes bind at the minor groove of DNA. Complexes 2-4 show DNA cleavage activity in dark in the presence of a reducing agent 3-mercaptopropionic acid (MPA) via a mechanistic pathway involving formation of hydroxyl radical as the reactive species. The complexes also show efficient photo-induced DNA cleavage activity on irradiation with a monochromatic UV light of 365 nm in absence of any external reagent. The cleavage efficiency follows the order: 3>4>2. The complexes exhibit significant DNA cleavage activity on irradiation with visible light of 633 nm. Control experiments show inhibition of cleavage in presence of singlet oxygen quenchers like sodium azide, histidine and enhancement of cleavage in D(2)O, suggesting formation of singlet oxygen as a reactive species in a type-II process. The photosensitizing effect of the thiomethyl group of the amino acid is evidenced from the observation of significant DNA photocleavage activity of the phen complex 2 as the phen ligand itself is not a photosensitizer.  相似文献   

5.
The synthesis, characterization and catalytic activity of a series of tetra-halogeno-dimethyl salen cobalt (II) complexes are reported in this paper. The investigated complexes of cobalt (II) with Schiff bases are: αα′-di-methyl Salen cobalt (II) [Co(dMeSalen)], 3,3′,5,5′-tetra chloro α,α′-di-methyl Salen cobalt (II), [Co(tCldMeSalen)], 3,3′-di-bromo 5,5′-di-chloro α,α′-di-methyl Salen cobalt (II), [Co(tBrdMeSalen)], 3,3′,5,5′-tetra bromo α,α′-di-methyl Salen cobalt (II), [Co(tBrdMeSalen)] and 3,3′,5,5′-tetra iodo α,α′-di-methyl Salen cobalt (II), [Co(tIdMeSalen)] (where Salen is bis(salicylaldehyde)ethylenediamine). The characterization of the complexes was performed by elemental analysis, cyclic voltammetry, UV-Vis, IR and EPR spectroscopies. The study was made in DMF, and pyridine was used for coordination as axial base. The redox potential is influenced by the substituent grafted on aromatic ring and in the azomethynic position and also by the molecules coordinating in axial position (solvent, DMF, or pyridine). The catalytic oxygenation of 2,6-di-tert-butylphenol by these complexes leads to the obtention of benzoquinone and diphenoquinone products. The cobalt (II) complexes form reversible adducts with molecular oxygen.  相似文献   

6.
A series of mononuclear copper(II) complexes having a 1:1 molar ratio of copper and the planar heterocyclic base like 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) are prepared from a reaction of copper(II) nitrate.trihydrate and the base (L) in ethanol or aqueous ethanol at different temperatures. The complexes [Cu(dpq)(NO(3))(2)] (2), [Cu(dpq)(NO(3))(H(2)O)(2)](NO(3)) (3), [Cu(dpq)(NO(3))(2)(H(2)O)(2)].2H(2)O (4.2H(2)O) and [Cu(dppz)(NO(3))(2)(H(2)O)].H(2)O (5.H(2)O) have been characterized by X-ray crystallography. The crystal structures show the presence of the heterocyclic base in the basal plane. The coordination geometries of the copper(II) centers are axially elongated square-pyramidal (4+1) in 2, 3 and 5, and octahedral (4+2) in 4. The nitrate anion in the coordination sphere displays unidentate and bidentate chelating bonding modes. The axial ligand is either H(2)O or NO(3) in these structures giving a Cu-L(ax) distance of approximately 2.4 A. The one-electron paramagnetic complexes (mu approximately 1.8 mu(B)) exhibit axial EPR spectra in DMF glass at 77 K giving g(parallel)>g( perpendicular ) with an A(parallel) value of approximately 170G indicating a [d(x)2(-y)2](1) ground state. The complexes are redox active and display a quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.0 V vs. SCE giving an order of the E(1/2) values as 5(dppz)>2-4 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). The complexes bind to calf thymus DNA giving an order 5 (dppz)>2 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). An effect of the extended planar ring in dpq and dppz is observed in the DNA binding. The complexes show nuclease activity with pUC19 supercoiled DNA in DMF/Tris-HCl buffer containing NaCl in presence of mercaptopropanoic acid as a reducing agent. The extent of cleavage follows the order: [Cu(phen)(2)(H(2)O)](ClO(4))(2)>5>2 approximately 3 approximately 4>1. The bis-phen complex is a better cleaver of SC DNA than 1-5 having mono-heterocyclic base. Mechanistic investigations using distamycin reveal minor groove biding for the phen, dpq complexes, and a major groove binding for the dppz complex 5. The cleavage reactions are found to be inhibited in the presence of hydroxyl radical scavenger DMSO and the reactions are proposed to proceed via sugar hydrogen abstraction pathway. The ancillary ligand is found to have less effect in DNA binding but are of importance in DNA cleavage reactions.  相似文献   

7.
Two new ruthenium(II) complexes of Schiff base ligands (L) derived from cinnamaldehyde and ethylenediamine formulated as [Ru(L)(bpy)2](ClO4)2, where L1 = N,N’-bis(4-nitrocinnamald-ehyde)ethylenediamine and L2 = N,N’-bis(2-nitrocinnamaldehyde)-ethylenediamine for complex 1 and 2, respectively, were isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods. The electrochemical behavior of the complexes showed the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of the complexes with calf thymus DNA (CT-DNA) using absorption, emission spectral studies and electrochemical techniques have been used to determine the binding constant, Kb and the linear Stern–Volmer quenching constant, KSV. The results indicate that the ruthenium(II) complexes interact with CT-DNA strongly in a groove binding mode. The interactions of bovine serum albumin (BSA) with the complexes were also investigated with the help of absorption and fluorescence spectroscopy tools. Absorption spectroscopy proved the formation of a ground state BSA-[Ru(L)(bpy)2](ClO4)2 complex. The antibacterial study showed that the Ru(II) complexes (1 and 2) have better activity than the standard antibiotics but weak activity than the ligands.  相似文献   

8.
A series of new cobalt(III) complexes were prepared. They are [CoL1(py)3]·NO3 (1), [CoL2(bipy)(N3)]·CH3OH (2), [CoL3(HL3)(N3)]·NO3 (3), and [CoL4(MeOH)(N3)] (4), where L1, L2, L3 and L4 are the deprotonated form of N′-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N′-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N′-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2′-bipyridine. The complexes were characterized by infrared and UV–Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35 μmol L−1, respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7 μmol L−1. While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed.  相似文献   

9.
New ternary copper(II) complexes [CuLnB](ClO4) (1-3), where HLn is the NSO donor Schiff base derived from the condensation of 2-mercaptoethylamine hydrochloride with salicylaldehyde (HL1) or 2-hydroxy-3-methoxybenzaldehyde (HL2) and B is NN-donor heterocyclic base like 2,2′-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2) or 2,9-dimethyl-1,10-phenanthroline (dmp, 3), are prepared, structurally characterized by X-ray crystallography and their DNA cleavage activity studied. The complexes show distorted square-pyramidal (4 + 1) CuN3OS coordination geometry in which the NSO-donor Schiff base is bonded at the basal plane and the NN-donor heterocyclic base displays axial-equatorial mode of bonding [Cu-S distance: ∼2.4 Å]. The one-electron paramagnetic (μeff = ∼1.9 μB) complexes display axial EPR spectra in DMF glass at 77 K giving g = ∼2.2 (A = 162 G) and g = ∼2.0, indicating {dx2-y2}1 ground state. The complexes exhibit visible spectral d-d band in MeCN near 650 nm and two charge transfer bands near 400 nm. Complexes 1 and 2 display quasireversible cyclic voltammetric response in DMF-Tris buffer (1:4 v/v, pH 7.2) for the Cu(II)/Cu(I) couple at ca. −0.1 V vs. SCE. Complex 3 exhibits an irreversible reduction process forming [CuI(dmp)2]+. Binding of 1-3 to calf thymus DNA shows the relative order: 2 (phen) ? 3 (dmp) > 1 (bpy). Complex 2 efficiently cleaves supercoiled pUC19 DNA in the presence of mercaptopropionic acid (MPA) forming hydroxyl radical or on irradiation with light of 312, 532 and 632.8 nm wavelength in a type-II process. Complexes 1 and 3 are cleavage inactive.  相似文献   

10.
The mononuclear copper complexes with the quinolone antibacterial drug enrofloxacin (=Herx) in the presence or not of a nitrogen donor heterocyclic ligand 1,10-phenanthroline (=phen) and 2,2'-bipyridine (=bipy) have been prepared and characterized. Interaction of copper(II) with deprotonated enrofloxacin leads to the formation of the neutral complex Cu(erx)2(H2O), 1, while the presence of phen or bipy leads to the formation of a neutral or a cationic mononuclear complex, respectively. The crystal structures of (chloro)(1,10-phenanthroline)(enrofloxacinato)copper(II), 2, and (aqua)(2,2'-bipyridine)(enrofloxacinato)copper(II) chloride, 3, have been determined with X-ray crystallography. The complexes have been studied with X-band electron paramagnetic resonance in aqueous solutions at liquid helium temperature. The study of the interaction of the complexes with calf-thymus DNA has been performed with diverse spectroscopic techniques and has showed that all complexes are bound to DNA by the intercalative mode. The antimicrobial efficiency of the complexes has been tested on three different microorganisms and the available evidence supports that the best inhibition is provided by Cu(erx)2(H2O) (minimum inhibitory concentration=0.125 microg mL(-1)) against Escherichia coli and Pseudomonas aeruginosa.  相似文献   

11.
Metal complexes of 2-pyridine carboxaldehyde 2′-pyridinylhydrazone 1-oxide (poph) and 2-pyridinecarboxaldehyde 2′-quinolinylhydrazone 1-oxide (poqh) are reported with copper(II), nickel(II), cobalt(II), iron(II) and manganese(II). Each ligand appears to function as an ONN donor, via the pyridine N-oxide oxygen, the imine nitrogen, and a pyridine or quinoline nitrogen. The complexes have been characterised by magnetic susceptibility measurements to liquid nitrogen temperature, and also by electronic, infrared, X-ray powder diffraction, and Mössbauer spectra. No magnetic interaction was detected with the copper(II) complexes. All the complexes of metal nitrates appear to be monomers.The complexes of poph with the halides and thiocyanates of nickel(II) and cobalt(II) appear to be six-coordinate and N-oxide-bridged; they exhibit varying degress of antiferromagnetic interaction and the magnetic data for the nickel(II) complexes have been fitted to various models. In contrast, the bulky ligand poqh produces halide-bridged six-coordinate nickel(II) complexes and monomeric five-coordinate cobalt(II) complexes.This behaviour by poqh resembles that of the related NNN ligands paphy and paqhy, which are the Schiff bases of 2-pyridinecarboxaldehyde with 2-pyridinylhydrazine and 2-quinolinylhydrazine, respectively.  相似文献   

12.
Isonicotinoylhydrazide Schiff's bases formed by the reaction of substituted and unsubstituted furyl-2-carboxaldehyde and thiophene-2-carboxaldehyde with isoniazid and, their Co (II), Cu (II), Ni (II) and Zn (II) complexes have been synthesized, characterized and screened for their in vitro antibacterial activity against Mycobacterium tuberculosis, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae, Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureus and Streptococcus pyogenes bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata. The results of these studies show the metal complexes to be more antibacterial and antifungal against one or more bacterial/fungal strains as compared to the uncomplexed compounds. The brine shrimp bioassay indicated Schiff's bases, L3 and L6 and, their Cu (II) and Ni (II) metal complexes to be cytotoxic against Artemia salina, while all other compounds were inactive (LD50 > 1000).  相似文献   

13.
A new binucleating ligand, m-xyl-bis(3-bae)) and its copper(II) and nickel(II) complexes have been prepared and characterized by various physical techniques. Data for the complexes indicate that they both have square-planar geometries. High resolution 1H and 13C NMR confirm the square-planar geometry of the binuclear nickel(II) complex is maintained in non-coordinating solvents. The magnetic moment of the copper(II) complex is typical of square-planar complexes and the EPR spectrum in solution indicates the absence of any magnetic coupling between metal centers. In addition, both metal complexes display irreversible electrochemical behavior on various electrode surfaces.  相似文献   

14.
A series of cobalt(II) complexes of Schiff base with some peripheral substituents was employed for the measurements of redox potentials of the cobalt(II) complexes and stability constants for those pyridine and oxygen adducts. The electron-withdrawing substituents favor the reduction of a cobalt(II) ion, but make its oxidation difficult. While a Hammett reaction constants for log Kpy is positive, that for log KO2 is negative, indicating that pyridine nucleophilically attacks the cobalt(II) ion, but molecular oxygen attacks the ion electrophilically.  相似文献   

15.
Several new Cu-hippurate derivative-phenanthroline ternary complexes have been prepared. The X-ray structure of one of them, [Cu(hip)(phen)2]+·(hip) (2) (where hip is hippurate and phen is 1,10-phenanthroline) has been solved. The structure of this new compound shows important differences (3D-pattern) to other similar related complexes (2D-pattern). A study of the biological activity of [Cu(hip)(phen)2]+·(hip)·2H2O (2), [Cu(BGG)(phen)2]+·(BGG)·6H2O (3), [Cu(BIGG)2(phen)](H2O) (4) and [Cu(I-hip)(bpy)2]+·(I-hip)·3.5H2O (5) (where I-hip is ortho-iodohippurate, BGG corresponds to benzoylglycilglycine, and BIGG is ortho-iodobenzoylglycilglycine) is included and compared with the anti-proliferative activity of [Cu(I-hip)(phen)2]+·(I-hip)·7H2O (1) previously described, resulting in a greater cytotoxic activity of the compounds with 1,10-phenanthroline instead of those with 2,2′-bipyridyl, in the same way that removing iodine substitution or lengthening the peptidic chain diminishes the activity of compounds compared with 1. The presence of an ortho-iodine group and the direct bond between Ar-CO and glycine moieties yield to the best results.  相似文献   

16.
17.
5-Methyl 2-furfuraldehyde thiosemicarbazone (M5HFTSC) with nickel(II) leads to three types of complexes: [Ni(M5HFTSC)(2)X(2)], [Ni(M5FTSC)(2)] and [Ni(M5FTSC)(2)] x 2DMF. In the first type the ligand remains in thione form, while in the two other, the anionic thiolato form is involved. The species [Ni(M5HFTSC)(2)X(2)] has been characterized spectroscopically. The structures of [Ni(M5FTSC)(2)] x 2DMF and [Ni(M5FTSC)(2)] have been solved using X-ray diffraction. Biological studies of [Ni(M5HFTSC)(2)Cl(2)] have been carried out in vitro for antifungal activity on human pathogenic fungi, Aspergillus fumigatus and Candida albicans, and in vivo for toxicity on mice. The results are compared to those of the ligand, the metal salt and a similar copper complex [Cu(M5HFTSC)Cl(2)].  相似文献   

18.
Mononuclear neutral manganese(II) and cobalt(II) complexes with the antibiotic Sodium Monensin A (Mon-Na, 1b) were synthesized and characterized. The crystal structures of M(Mon-Na)2Cl2.H2O (M=Mn, 2; M=Co, 3) were determined by X-ray crystallography. The complexes crystallize in monoclinic space group C2 with a tetrahedrally coordinated transition metal attached to oxygen atoms of deprotonated carboxyl groups of two Sodium Monensin molecules and two chloride ions. The sodium ion remains in the cavity of the ligand and cannot be replaced by Mn(II) or Co(II). The complexes were additionally characterized by different spectroscopic techniques (UV-Visible, EPR, FAB-MS). A preferable octahedral environment around the transition metal centers is observed in polar solvents while the complexes retain their tetrahedral structure in non-polar media. The antimicrobial activity of 1b, 2 and 3 was tested against Gram(+) and Gram(-) bacteria.  相似文献   

19.
The synthesis and characterization of two cobalt(II) complexes, Co(phen)(ma)Cl 1 and Co(ma)2(phen) 2, (phen = 1,10-phenanthroline, ma = maltolate or 2-methyl-4-oxo-4H-pyran-3-olate) are reported herein. The complexes have been characterized by FTIR, CHN analysis, fluorescence spectroscopy, UV-visible spectroscopy, conductivity measurement and X-ray crystallography. The number of chelated maltolate ligands seems to influence their DNA recognition, topoisomerase I inhibition and antiproliferative properties.  相似文献   

20.
A series of Co (II), Cu (II), Ni (II) and Zn (II) complexes of mercaptothiadiazole-derived furanyl, thienyl, pyrrorlyl, salicylyl and pyridinyl Schiff bases were synthesized, characterized and screened for their in vitro antibacterial activity against four Gram-negative, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella fexneri, and two Gram-positive; Bacillus subtilis and Staphylococcus aureous bacterial strains. The results of these studies show the metal complexes to be more antibacterial as compared to the prepared un-complexed Schiff bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号