首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transgene copy number is an important criterion for determining the utility of transgenic events. Single copy integration events are highly desirable when the objective is to produce marker free plants through segregation or when it is necessary to introgress different transgenes into commercial cultivars from different transgenic events. In contrast multi-copy events are advocated by several authors for higher expression of the transgene. Till recently, it was thought that employment of the particle gun for transformation results in the production of a high proportion of multi-copy events often with complex integration pattern when compared to Agrobacterium-mediated transformation. However, it has been demonstrated that usage of cassette DNA for bombardment in place of whole plasmids would result in simple insertion pattern of the transgenes. While investigating the effect of varying the cassette DNA amount on stable transformation, the frequency of occurrence of low copy events was observed to increase when lower doses of cassette DNA was employed for bombardment. Large scale experimentation with rigorous statistical analysis performed to verify the above observations employing Helium gun and the Electric discharge gun for gene delivery confirmed the above observations. Helium gun experiments involving production of more than 1,600 corn events consistently yielded single copy events at higher frequencies at lower cassette DNA load (46% at 2.5 ng/shot) as compared to higher cassette DNA load (29% at 25 ng/shot) across 18 independent experiments. Results were nearly identical with the Electric discharge particle gun device where single copy events were recovered at frequencies of 54% at 2.5 ng cassettes DNA per shot as compared to 18% at 25 ng cassette DNA per shot. The transformation frequency declined from 41 to 34% (Helium gun) and from 48 to 31% (Electric discharge gun) with reduction in cassette DNA quantity from 25 to 2.5 ng per shot. This reduction in the transformation frequency is more than compensated by the savings in time and effort involved in the production and screening of events if the desired outcome is single copy events. These results demonstrate the flexibility of the particle gun method for controlling the frequency of production of either low copy or high copy events by altering the quantity of cassette DNA used for bombardment. The transgene expression levels over generations in relation to its integration need further investigations.  相似文献   

3.
The nucleocapsid protein (N) gene of the lettuce isolate of tomato spotted wilt virus (TSWV) was inserted into peanut (Arachis hypogaea L.) via microprojectile bombardment. Constructs containing the hph gene for resistance to the antibiotic hygromycin and the TSWV N gene were used for bombardment of peanut somatic embryos. High frequencies of transformation and regeneration of plants containing the N gene were obtained. Southern blot analysis of independent transgenic lines revealed that one to several copies of the N gene were integrated into the peanut genome. Northern blot, RT-PCR and ELISA analyses indicated that a gene silencing mechanism may be operating in primary transgenic lines containing multiple copy insertions of the N transgene. One transgenic plant which contained a single copy of the transgene expressed the N protein in the primary transformant, and the progeny segregated in a 3 :1 ratio based upon ELISA determination. Received: 24 October 1997 / Revision received: 9 February 1998 / Accepted: 21 February 1998  相似文献   

4.
The feasibility of map-based cloning in wheat has been demonstrated recently, opening new perspectives for a better understanding of wheat plant biology and for accelerating wheat improvement in the coming decades. To validate the function of candidate genes, an efficient transformation system is needed. Here, we have performed two methods for wheat transformation using particle bombardment that ensures the production of transgenic plants with simple integration patterns for research purposes and stable transgene expression for accurate and rapid validation of gene function. To establish this method, we used the bar and pmi selectable genes either as part of whole plasmids, gene cassettes (obtained by PCR or purified on agarose gels), or as dephosphorylated cassettes. The analysis of about 300 transgenic plants showed that the use of gene cassettes or dephosphorylated gene cassettes leads to a majority (50–60 %) of simple integration events. This is significantly higher than the number of simple events obtained with whole plasmids (9–25 %). Moreover, the decrease of the quantity of DNA from 500 to 5 ng/µl for PCR-amplified cassettes used for transformation increased the number of single integration events. The transformation efficiency remained stable at 2.5 %, and a higher number of plants expressing the transgenes were obtained with the dephosphorylated cassette. No correlation was observed between the complexity of the events and stability of expression of the transgene, suggesting that plasmid sequences could be involved on transgene silencing. The inheritability of the transgene was demonstrated in T1 and T2 generations. These results show that biolistic transformation of dephosphorylated gene cassettes provides an easy and efficient route to produce backbone vector-free transgenic wheat carrying and expressing intact and single transgenes.  相似文献   

5.
6.
Sugarcane (Saccharum spp. hybrids) is an interspecific hybrid with a highly polyploid and frequently aneuploid genome. This C4 grass accounts for nearly 70% of the global sugar production and more recently has become an important biofuel feedstock. Biolistic gene transfer of plasmid DNA is the most frequently used approach for genetic transformation of sugarcane. Minimal expression cassettes lacking vector backbone sequences (MC) have been reported to support simple transgene integration in other species. In this study, we introduced a MC of nptII into embryogenic callus derived from immature leaf whorl cross-sections by biolistic gene transfer. The precipitation equivalents of 12.5, 25 or 50 ng of the nptII MC were delivered per shot to the target tissue with 1.0 μm gold particles. A total of 203 independent putative transgenic plants were regenerated following 80 bombardments and selection on geneticin or paromomycin containing media and 176 transgenic lines were confirmed with PCR. Twenty independent transgenic lines were selected for Southern blot analysis and expression analysis by NPTII ELISA from each of the three treatments. Genomic DNA from transgenic sugarcane plants displayed two to 13 nptII hybridization signals on Southern blots. There was a trend toward reduced transgene integration complexity and reduced transgene expression levels when lower (12.5 ng) MC was used per shot. These results demonstrate that backbone free MCs can be efficiently integrated and expressed in sugarcane.  相似文献   

7.
Nucleic acid quantification is a relevant issue for the characterization of mammalian recombinant cell lines and also for the registration of producer clones. Quantitative real-time PCR is a powerful tool to investigate nucleic acid levels but numerous different quantification strategies exist, which sometimes lead to misinterpretation of obtained qPCR data. In contrast to absolute quantification using amplicon- or plasmid standard curves, relative quantification strategies relate the gene of interest to an endogenous reference gene. The relative quantification methods also consider the amplification efficiency for the calculation of the gene copy number and thus more accurate results compared to absolute quantification methods are generated. In this study two recombinant Chinese hamster ovary cell lines were analysed for their transgene copy number using different relative quantification strategies. The individual calculation methods resulted in differences of relative gene copy numbers because efficiency calculations have strong impact on gene copy numbers. However, in context of comparing transgene copy numbers of two individual clones the influence of the calculation method is marginal. Therefore especially for the comparison of two cell lines with the identical transgene any of the relative qPCR methods was proven as powerful tool.  相似文献   

8.
Summary Embryogenic suspension culture tissue of soybean (Glycine max Merrill.) was bombarded with particles coated with plasmid DNAs encoding hygromycin resistance andβ-glucuronidase (GUS). One to two weeks after bombardment, embryogenic tissue was placed in a liquid proliferation medium containing hygromycin. Four to six weeks after bombardment, lobes of yellow-green, hygromycin-resistant tissue, which began as outgrowths on brown clumps of hygromycin-sensitive tissue, were isolated and cultured to give rise to clones of transgenic embryogenic material. In vivo GUS assays of hygromycin-resistant clones showed that the early outgrowths could be negative, sectored, or positive for GUS activity. Transgenic, fertile plants could be routinely produced from the proliferating transgenic embryogenic clones. Southern hybridization analyses confirmed stable transformation and indicated that both copy number and integration pattern of the introduced DNA varied among independently transformed clones. Hybridization analysis of DNA from progeny plants showed genetic linkage of multiple copies of introduced DNA. An average of three transgenic clones were obtained per bombardment making this procedure very suitable for transformation of soybean.  相似文献   

9.
Plant regeneration from immature embryos of 15 Indian barley genotypes (Hordeum vulgare L.) was examined. Highest percent callus induction and number of regenerated plantlets were obtained in cultivars BL 2 (94.4 %; 12.1), RD 2668 (92.6 %; 9.1) and RD 2552 (90.8 %; 7.8). The highly responding cultivar BL 2 was selected for further development of transformation protocol. The plasmid DNA isolated from pCAMBIA1381 harbouring hptII gene as selectable marker and gusA gene as reporter was used. Particle bombardment was used for transformation of immature embryos and regeneration of transgenic plants in Indian barley genotype for the first time. Transformation experiments were carried out using different parameters and optimum conditions for DNA delivery was standardized. The transient expression of gusA gene was investigated as a preliminary test of optimum DNA delivery and for selecting the most appropriate bombardment parameters. The optimum conditions were: gold microparticles (diameter 1.0 μm) shot with 1,100 psi rupture disc pressure. The 3 cm distance between rupture disk and macrocarrier and 9 cm target tissue distance yielded high transient GUS expression. The immature embryos were bombarded twice to increase area for efficient gene delivery. Osmotic medium optimization with 0.4 M sorbitol and preculture of immature embryos for 5 days prior to bombardment resulted into efficient gene transfer in barley. Selection of transformed tissue was performed after 7 days resting step on selection medium containing 50 mg?l?1 hygromycin. After two more selection steps, green shoots were rooted on MSB5 medium with 50 mg?l?1 hygromycin. PCR analysis using primers specific for hptII and gusA genes and Southern blot analysis with hptII probes confirmed the stable integration of transgene in barley genome. Molecular analysis of T1 generation plantlets revealed the amplification of selectable marker hptII gene in the progeny.  相似文献   

10.
The use of particle gun for the production of marker-free plants is scant in published literature. Perhaps this is a reflection of the widely held notion that the events generated through bombardment tend to have multiple copies of transgenes, usually integrated at a single locus, features which precludes segregating away the selectable marker gene. However, our previous studies have shown that single-copy integrants are obtained at a high frequency if limited quantity of DNA is used for bombardment. Also, the concatemerized insertion of transgenes has been demonstrated to be greatly reduced if “cassette DNA” is employed in place of whole plasmid DNA for bombardment. Based on the above findings, in the present study the feasibility of co-bombardment was evaluated for the production of marker-free plants in corn, employing a combination of limited quantity DNA and cassette DNA approaches for bombardment. Transgenic events were generated after co-bombardment of a selectable marker cassette containing the nptII gene (2.5 ng per shot) and a GUS gene cassette (15 ng per shot). Among these events single-copy integrants for nptII gene occurred at an average frequency of 68% within which the co-expression frequency of GUS and nptII genes ranged from 41% to 80%. Marker-free corn plants could be identified from the progeny of 28 out of the 103 R0 co-expressing events screened. The results demonstrate that by using cassette DNA and low quantities of DNA for bombardment, marker-free plants are produced at efficiencies comparable to that of Agrobacterium-based co-transformation methods.  相似文献   

11.
Particle bombardment and Agrobacterium-mediated transformation are two popular methods currently used for producing transgenic maize. Agrobacterium-mediated transformation is expected to produce transformants carrying fewer copies of the transgene and a more predictable pattern of integration. These putative advantages, however, tradeoff with transformation efficiency in maize when a standard binary vector transformation system is used. Using Southern, northern, real-time PCR, and real-time RT-PCR techniques, we compared transgene copy numbers and RNA expression levels in R1 and R2 generations of transgenic maize events generated using the above two gene delivery methods. Our results demonstrated that the Agrobacterium-derived maize transformants have lower transgene copies, and higher and more stable gene expression than their bombardment-derived counterparts. In addition, we showed that more than 70% of transgenic events produced from Agrobacterium-mediated transformation contained various lengths of the bacterial plasmid backbone DNA sequence, indicating that the Agrobacterium-mediated transformation was not as precise as previously perceived, using the current binary vector system.  相似文献   

12.
Two barley transformation systems, Agrobacterium-mediated and particle bombardment, were compared in terms of transformation efficiency, transgene copy number, expression, inheritance and physical structure of the transgenic loci using fluorescence in situ hybridisation (FISH). The efficiency of Agrobacterium-mediated transformation was double that obtained with particle bombardment. While 100% of the Agrobacterium-derived lines integrated between one and three copies of the transgene, 60% of the transgenic lines derived by particle bombardment integrated more than eight copies of the transgene. In most of the Agrobacterium-derived lines, the integrated T-DNA was stable and inherited as a simple Mendelian trait. Transgene silencing was frequently observed in the T1 populations of the bombardment-derived lines. The FISH technique was able to reveal additional details of the transgene integration site. For the efficient production of transgenic barley plants, with stable transgene expression and reduced silencing, the Agrobacterium-mediated method appears to offer significant advantages over particle bombardment.  相似文献   

13.
Direct DNA delivery via microprojectile bombardment has become an established approach for gene transfer into peanut ( Arachis hypogaea L.). To optimize our transformation protocol and to simultaneously explore the function of a heterologous promoter whose activity is developmentally regulated, embryogenic cultures from three peanut cultivars were bombarded with two plasmid constructs containing a uidA gene controlled by either a soybean vegetative storage protein gene promoter or a cauliflower mosaic virus 35S promoter. We found that GUS transient expression was useful to predict stable transformation and confirmed that image analysis could provide a quick and efficient method for semi‐quantitation of transient expression. One hundred and sixty hygromycin‐resistant cell lines were recovered from and maintained on selective medium, and those tested by Southern blot analysis showed integration of the foreign gene. Over 200 transgenic plants were regenerated from 38 cell lines. More than 100 plants from 32 cell lines flowered and 79 plants from 19 cell lines produced pods. Over 1000 R1 seeds were harvested. Analysis of expression in primary transgenic plants showed that GUS expression driven by the vspB promoter was modulated by chemical and positional information.  相似文献   

14.
Quantitative real-time polymerase chain reaction (PCR) assays were designed that enabled the zygosity of transgenes in soybean [Glycine max (L.) Merrill] and peanut (Arachis hypogaea L.) to be determined. The two zygosity assays, based on TaqMan technology that uses a fluorogenic probe which hybridizes to a PCR target sequence flanked by primers, were both accurate and reproducible in the determination of the number of transgenes present in a cell line. In the first assay, in which TaqMan assays were performed on increasing amounts of a plasmid containing the transgene of interest, a linear relationship between the level of fluorescence and the template amount was produced. Using the resultant linear relationships as standard curves, we were able to determine the zygosity of both soybeans segregating for the cry1Ac transgene and that of a T1 peanut segregating for the hph transgene. In the second assay, a relative determination of copy number (referred to as comparative Ct) was performed on transgenic soybeans by comparing the amplification efficiency of the transgene of interest to that of an endogenous gene in a multiplexed PCR reaction. Both methods proved to be sufficiently sensitive to differentiate between homozygotes and hemizygotes. These assays have numerous potential applications in plant genetic engineering and tissue culture, including the hastening of the identification of transgenic tissue, selecting transformation events with a low number of transgenes and the monitoring of the transmission of transgenes in subsequent crosses.  相似文献   

15.
Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm2 embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type).  相似文献   

16.
As barley is recalcitrant to transformation with current methods, a new improved system is required to apply genetic transformation in breeding programs. In a previous study, we defined optimal conditions for plant regeneration (PR) using mature embryos. This study was conducted to establish an improved transformation system employing the previously adjusted regeneration conditions. Optimal DNA delivery condition for the embryogenic calli developed from mature embryos was bombardment pressure of 1,100 psi at the target distance of 6 cm. The feasibility of the regeneration and DNA delivery conditions was confirmed by developing transgenic barley plants transformed with the Arabidopsis nucleoside diphosphate kinase 2 (AtNDPK2) cDNA via particle bombardment of embryogenic calli from mature embryos. Stable integration of AtNDPK2 cDNA into barley genome was confirmed by PCR and Southern blot analysis of AtNDPK2 transgene. Transgenic plants showed about 10% reduction in membrane damage caused by methyl viologen, indicating the expression of AtNDPK2 transgene. The results demonstrated that the transformation system developed in this study employing the PR from mature embryo-derived embryonic callus is applicable in transgenic barley production.  相似文献   

17.
Efficient and genotype-independent in vitro regeneration is an essential prerequisite for incremental trait improvement in peanut (Arachis hypogaea L.) via genetic transformation. We have optimized a facile and rapid method to obtain direct shoot organogenesis from cotyledonary node (CN) explants excised from peanut seedlings germinated on cytokinin-supplemented Murashige and Skoog (MS) basal salt medium. Starting with mature embryos, shoot induction occurred in approximately 7 weeks, followed by 4 weeks for rooting of excised shoots and 3 weeks of acclimatization of regenerated plantlets in soil. The regeneration and transformation system described here is time-efficient, yielding greenhouse-acclimatized plantlets within 14 weeks, in contrast to 12–14 months required for initiating and regenerating somatic embryogenic cultures, currently the most tractable method available for peanut transformation. The highest shoot induction frequency and shoot quality was obtained with 6.66 μM 6-benzylaminopurine, followed by adequate root induction at 5.37 μM α-Naphthaleneacetic acid. New Mexican Valencia A was chosen for Agrobacterium-mediated transformation. Stable GUS expression from pWBvec10a was obtained at a transformation rate of 1.25?%. Furthermore, results from genomic PCR and Southern blot analyses showed that 14 out of 576 putative transgenic regenerants contained transgene pSag12::IPT, therefore yielding a total transformation rate of 2.43?%. The cotyledonary node-based direct regeneration system described here is time-efficient and amenable to Agrobacterium-mediated transformation, and therefore should be further explored for peanut transgenic improvement.  相似文献   

18.

Key message

Agrobacterium tumefaciens strains differ not only in their ability to transform tomato Micro-Tom, but also in the number of transgene copies that the strains integrate in the genome.

Abstract

The transformation efficiency of tomato (Solanum lycopersicum L.) cv. Micro-Tom with Agrobacterium tumefaciens strains AGL1, EHA105, GV3101, and MP90, harboring the plasmid pBI121 was compared. The presence of the nptII and/or uidA transgenes in regenerated T0 plants was determined by PCR, Southern blotting, and/or GUS histochemical analyses. In addition, a rapid and reliable duplex, qPCR TaqMan assay was standardized to estimate transgene copy number. The highest transformation rate (65 %) was obtained with the Agrobacterium strain GV3101, followed by EHA105 (40 %), AGL1 (35 %), and MP90 (15 %). The mortality rate of cotyledons due to Agrobacterium overgrowth was the lowest with the strain GV3101. The Agrobacterium strain EHA105 was more efficient than GV3101 in the transfer of single T-DNA insertions of nptII and uidA transgenes into the tomato genome. Even though Agrobacterium strain MP90 had the lowest transformation rate of 15 %, the qPCR analysis showed that the strain MP90 was the most efficient in the transfer of single transgene insertions, and none of the transgenic plants produced with this strain had more than two insertion events in their genome. The combination of higher transformation efficiency and fewer transgene insertions in plants transformed using EHA105 makes this Agrobacterium strain optimal for functional genomics and biotechnological applications in tomato.  相似文献   

19.
The present study describes a simple and efficient protocol for plant regeneration from scutellar-derived embryogenic calli of an elite basmati indica rice (Oryza sativa L., cv Pusa Basmati 1) transformed with Agrobacterium. A supervirulent plasmid pTOK233 as well as a non-supervirulent plasmid pJB90GI containing -glucuronidase (gus) and hygromycin phosphotransferase (hpt) chimeric genes were used to assess transformation and regeneration efficiency. The effects of some factors like the bacterial density and inclusion of sorbitol in the medium on the co-culture and transformation have been evaluated; the procedure for selection and regeneration from transformed calli was found to be critical. Furthermore, co-culture and selection on regeneration medium was found to be better than callus medium and led to minimal media manipulations. Regeneration medium supplemented with 3% maltose was found to be better for regeneration as compared to 3% sucrose. The transformed calli were subjected to three cycles of regeneration, thus converting a higher number of transformation events into regenerants. The selected calli as well as leaf sections and roots of the transformants were GUS positive. The stable integration of the transgene was confirmed by polymerase chain reaction and Southern blot analysis of the transformants. Interestingly, the presence of three additional vir genes in supervirulent plasmid pTOK233 was not required for transformation as transformation was successful with non-supervirulent plasmid pJB90GI, although the transformation and regeneration frequency was higher with the former. This effective protocol for regeneration from transformed calli resulted in a relatively high transformation frequency.  相似文献   

20.
An efficient method has been developed for somatic embryogenesis, plant regeneration and transformation of the important banana cultivar ‘Dwarf Cavendish’ (Musa AAA). A high embryogenic response was obtained in 1.36 % of immature male flower explants. Once embryogenic structures were transferred to liquid medium, embryogenic cell suspensions (ECSs) with high regeneration capacity were obtained. ECSs were incubated under different conditions with Agrobacterium tumefaciens strain EHA101 harboring vector pFAJ3000 that contains pNos-nptII-tOcs and p35S-uidAintron-t35S expression cassettes. The effect of spermidine and infection time on transformation efficiency was examined. The highest efficiency was obtained when ECSs were infected for 6 h, in medium supplemented with 200 μM acetosyringone and 1.0 mM spermidine, with more than 600 independent lines/~50 mg FW of settled cells. Spermidine showed an enhancing effect, increasing significantly the transient Gus expression and the number of transformed embryo colonies and regenerated plants in comparison with the same treatments without this polyamine. This is the first report showing efficient Agrobacterium tumefaciens mediated transformation using embryogenic cell suspension cultures in the ‘Dwarf Cavendish’ banana cultivar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号