首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pressure-induced unfolding of 23-kDa protein from spinach photosystem II has been systematically investigated at various experimental conditions. Thermodynamic equilibrium studies indicate that the protein is very sensitive to pressure. At 20 degrees C and pH 5.5, 23-kDa protein shows a reversible two-state unfolding transition under pressure with a midpoint near 160 MPa, which is much lower than most natural proteins studied to date. The free energy (DeltaG(u)) and volume change (DeltaV(u)) for the unfolding are 5.9 kcal/mol and -160 ml/mol, respectively. It was found that NaCl and sucrose significantly stabilize the protein from unfolding and the stabilization is associated not only with an increase in DeltaG(u) but also with a decrease in DeltaV(u). The pressure-jump studies of 23-kDa protein reveal a negative activation volume for unfolding (-66.2 ml/mol) and a positive activation volume for refolding (84.1 ml/mol), indicating that, in terms of system volume, the protein transition state lies between the folded and unfolded states. Examination of the temperature effect on the unfolding kinetics indicates that the thermal expansibility of the transition state and the unfolded state of 23-kDa protein are closer to each other and they are larger than that of the native state. The diverse pressure-refolding pathways of 23-kDa protein in some conditions were revealed in pressure-jump kinetics.  相似文献   

2.
Ligand-induced biphasic protein denaturation   总被引:3,自引:0,他引:3  
The results of a thermodynamic calculation of the excess heat capacity that is based on experimental observations and that incorporates the effects of ligand binding on the two-state, thermal denaturation of a protein are presented. For a protein with a single-binding site on the native species and at subsaturating concentrations of ligand, bimodal or unimodal thermograms were computed merely by assuming a larger or smaller ligand association constant, respectively. The calculated thermograms for this simplified case show the salient features of those observed by differential scanning calorimetry for defatted human albumin monomer in the absence and presence of three ligands for which the protein has higher, intermediate, and lower affinity (Shrake, A., and Ross, P. D. (1988) J. Biol. Chem. 263, 15392-15399). The computation demonstrates that biphasic unfolding can result from a significant increase in the free energy of denaturation (and the transition temperature) during the course of unfolding due to a substantial increase in free ligand concentration caused by the release of bound ligand by denaturing protein. Such ligand-induced biphasic denaturation does not relate to macromolecular substructure but derives from a perturbation, during unfolding, of the ligand binding equilibrium, which is coupled to the equilibrium between the folded and unfolded protein species. Thus, this bimodality is not limited to thermally induced unfolding but is operative independent of the means used to effect denaturation and therefore must be considered when studying any macromolecular folding/unfolding reaction in the presence of ligand.  相似文献   

3.
The temperature dependence of the pressure-induced equilibrium unfolding of staphylococcal nuclease (Snase) was determined by fluorescence of the single tryptophan residue, FTIR absorption for the amide I' and tyrosine O-H bands, and small-angle X-ray scattering (SAXS). The results from these three techniques were similar, although the stability as measured by fluorescence was slightly lower than that measured by FTIR and SAXS. The resulting phase diagram exhibits the well-known curvature for heat and cold denaturation of proteins, due to the large decrease in heat capacity upon folding. The volume change for unfolding became less negative with increasing temperatures, consistent with a larger thermal expansivity for the unfolded state than for the folded state. Fluorescence-detected pressure-jump kinetics measurements revealed that the curvature in the phase diagram is due primarily to the rate constant for folding, indicating a loss in heat capacity for the transition state relative to the unfolded state. The similar temperature dependence of the equilibrium and activation volume changes for folding indicates that the thermal expansivities of the folded and transition states are similar. This, along with the fact that the activation volume for folding is positive over the temperature range examined, the nonlinear dependence of the folding rate constant upon temperature implicates significant dehydration in the rate-limiting step for folding of Snase.  相似文献   

4.
Y V Griko  P L Privalov 《Biochemistry》1992,31(37):8810-8815
Temperature-induced changes of the states of beta-lactoglobulin have been studied calorimetrically. In the presence of a high concentration of urea this protein shows not only heat but also cold denaturation. Its heat denaturation is approximated very closely by a two-state transition, while the cold denaturation deviates considerably from the two-state transition and this deviation increases as the temperature decreases. The heat effect of cold denaturation is opposite in sign to that of heat denaturation and is noticeably larger in magnitude. This difference in magnitude is caused by the temperature-dependent negative heat effect of additional binding of urea to the polypeptide chain of the protein upon its unfolding, which decreases the positive enthalpy of heat denaturation and increases the negative enthalpy of cold denaturation. The binding of urea considerably increases the partial heat capacity of the protein, especially in the denatured state. However, when corrected for the heat capacity effect of urea binding, the partial heat capacity of the denatured protein is close in magnitude to that expected for the unfolded polypeptide chain in aqueous solution without urea but only for temperatures below 10 degrees C. At higher temperatures, the heat capacity of the denatured protein is lower than that expected for the unfolded polypeptide chain. It appears that at temperatures above 10 degrees C not all the surface of the beta-lactoglobulin polypeptide chain is exposed to the solvent, even in the presence of 6 M urea; i.e., the denatured protein is not completely unfolded and unfolds only at temperatures lower than 10 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
K Sasahara  M Sakurai  K Nitta 《Proteins》2001,44(3):180-187
The influence of hydrostatic pressure (< or =100 MPa) on denaturant-induced unfolding of hen egg white lysozyme was investigated by means of ultraviolet spectroscopy at various temperatures. Assuming a two-state transition model, the dependence of Gibbs free-energy change of unfolding on the denaturant concentration was calculated. Under applied hydrostatic pressure, these data were interpreted as suggesting that a two-state model is not applicable in a restricted temperature range; the dominant effect of hydrostatic pressure is to affect the cooperativity in protein unfolding due to a chemical equilibrium shift in the direction of the reduction in the system volume. The deviation from the two-state transition model appears to be rationalized by assuming that applied pressure induces an intermediate conformation between the native and unfolded states of the protein. The implication of the thermodynamic stability of protein under pressure was discussed.  相似文献   

6.
Two mechanisms have been proposed for the thermal unfolding of ribonuclease S (RNase S). The first is a sequential partial unfolding of the S peptide/S protein complex followed by dissociation, whereas the second is a concerted denaturation/dissociation. The thermal denaturation of ribonuclease S and its fragment, the S protein, were followed with circular dichroism and infrared spectra. These spectra were analyzed by the principal component method of factor analysis. The use of multiple spectral techniques and of factor analysis monitored different aspects of the denaturation simultaneously. The unfolding pathway was compared with that of the parent enzyme ribonuclease A (RNase A), and a model was devised to assess the importance of the dissociation in the unfolding. The unfolding patterns obtained from the melting curves of each protein imply the existence of multiple intermediate states and/or processes. Our data provide evidence that the pretransition in the unfolding of ribonuclease S is due to partial unfolding of the S protein/S peptide complex and that the dissociation occurs at higher temperature. Our observations are consistent with a sequential denaturation mechanism in which at least one partial unfolding step comes before the main conformational transition, which is instead a concerted, final unfolding/dissociation step.  相似文献   

7.
During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.  相似文献   

8.
Thermodynamic and kinetic examination of protein stabilization by glycerol   总被引:17,自引:0,他引:17  
K Gekko  S N Timasheff 《Biochemistry》1981,20(16):4677-4686
The effect of concentrated glycerol on the thermal transitions of chymotrypsinogen and ribonuclease has been examined by differential spectrophotometry at 293 and 287 mm, respectively. It was found that for both proteins addition of glycerol raises the transition temperature, the increase in Tm being greater for ribonuclease than for chymotrypsinogen. This increase in the free energy of denaturation appears to reflect primarily a decrease in the entropy change. Analysis in terms of the Wyman linkage equation shows that, for both proteins, the exclusion of glycerol from the protein domain increases on denaturation i.e., the chemical potential of glycerol becomes even more positive when the protein unfolds relative to the native structure. This provides the thermodynamic stabilization free energy. Results of the kinetic examination of the slow unfolding reaction are consistent with the concept that the preferential exclusion of glycerol is related, at least in part, to enhanced solvent ordering.  相似文献   

9.
Equilibrium unfolding of class pi glutathione S-transferase   总被引:4,自引:0,他引:4  
The equilibrium unfolding transition of class pi glutathione S-transferase, a homodimeric protein, from porcine lung was monitored by spectroscopic methods (fluorescence emission and ultraviolet absorption), and by enzyme activity changes. Solvent (guanidine hydrochloride and urea)-induced denaturation is well described by a two-state model involving significant populations of only the folded dimer and unfolded monomer. Neither a folded, active monomeric form nor stable unfolding intermediates were detected. The conformational stability, delta Gu (H2O), of the native dimer was estimated to be about 25.3 +/- 2 kcal/mol at 20 degrees C and pH6.5.  相似文献   

10.
For the purpose of equilibrium and kinetic folding-unfolding studies, the SH3 domain of alpha-spectrin (spc-SH3) has long been considered a classic two-state folding protein. In this work we have indeed observed that the thermal unfolding curves of spc-SH3 measured at pH 3.0 by differential scanning calorimetry, circular dichroism, and NMR follow apparently the two-state model when each unfolding profile is considered individually. Nevertheless, we have found that protein concentration has a marked effect upon the thermal unfolding profiles. This effect cannot be properly explained in terms of the two-state unfolding model and can only be interpreted in terms of the accumulation of intermediate associated states in equilibrium with the monomeric native and unfolded states. By chemical cross-linking and pulsed-field gradient NMR diffusion experiments we have been able to confirm the existence of associated states formed during spc-SH3 unfolding. A three-state model, in which a dimeric intermediate state is assumed to be significantly populated, provides the simplest interpretation of the whole set of thermal unfolding data and affords a satisfactory explanation for the concentration effects observed. Whereas at low concentrations the population of the associated intermediate state is negligible and the unfolding process consequently takes place in a two-state fashion, at concentrations above approximately 0.5 mM the population of the intermediate state becomes significant at temperatures between 45 degrees C and 80 degrees C and reaches up to 50% at the largest concentration investigated. The thermodynamic properties of the intermediate state implied by this analysis fall in between those of the unfolded state and the native ones, indicating a considerably disordered conformation, which appears to be stabilized by oligomerization.  相似文献   

11.
The equilibrium and kinetic folding/unfolding of apomyoglobin (ApoMb) were studied at pH 6.2, 11 °C by recording tryptophan fluorescence. The equilibrium unfolding of ApoMb in the presence of urea was shown to involve accumulation of an intermediate state, which had a higher fluorescence intensity as compared with the native and unfolded states. The folding proceeded through two kinetic phases, a rapid transition from the unfolded to the intermediate state and a slow transition from the intermediate to the native state. The accumulation of the kinetic intermediate state was observed in a wide range of urea concentrations. The intermediate was detected even in the region corresponding to the unfolding limb of the chevron plot. Urea concentration dependence was obtained for the observed folding/unfolding rate. The shape of the dependence was compared with that of two-state proteins characterized by a direct transition from the unfolded to the native state.  相似文献   

12.
The photophysics of the single tyrosine in bovine ubiquitin (UBQ) was studied by picosecond time-resolved fluorescence spectroscopy, as a function of pH and along thermal and chemical unfolding, with the following results: First, at room temperature (25 degrees C) and below pH 1.5, native UBQ shows single-exponential decays. From pH 2 to 7, triple-exponential decays were observed and the three decay times were attributed to the presence of tyrosine, a tyrosine-carboxylate hydrogen-bonded complex, and excited-state tyrosinate. Second, at pH 1.5, the water-exposed tyrosine of either thermally or chemically unfolded UBQ decays as a sum of two exponentials. The double-exponential decays were interpreted and analyzed in terms of excited-state intramolecular electron transfer from the phenol to the amide moiety, occurring in one of the three rotamers of tyrosine in UBQ. The values of the rate constants indicate the presence of different unfolded states and an increase in the mobility of the tyrosine residue during unfolding. Finally, from the pre-exponential coefficients of the fluorescence decays, the unfolding equilibrium constants (KU) were calculated, as a function of temperature or denaturant concentration. Despite the presence of different unfolded states, both thermal and chemical unfolding data of UBQ could be fitted to a two-state model. The thermodynamic parameters Tm = 54.6 degrees C, DeltaHTm = 56.5 kcal/mol, and DeltaCp = 890 cal/mol//K, were determined from the unfolding equilibrium constants calculated accordingly, and compared to values obtained by differential scanning calorimetry also under the assumption of a two-state transition, Tm = 57.0 degrees C, DeltaHm= 51.4 kcal/mol, and DeltaCp = 730 cal/mol//K.  相似文献   

13.
Although beta-sheets represent a sizable fraction of the secondary structure found in proteins, the forces guiding the formation of beta-sheets are still not well understood. Here we examine the folding of a small, all beta-sheet protein, the E. coli major cold shock protein CspA, using both equilibrium and kinetic methods. The equilibrium denaturation of CspA is reversible and displays a single transition between folded and unfolded states. The kinetic traces of the unfolding and refolding of CspA studied by stopped-flow fluorescence spectroscopy are monoexponential and thus also consistent with a two-state model. In the absence of denaturant, CspA refolds very fast with a time constant of 5 ms. The unfolding of CspA is also rapid, and at urea concentrations above the denaturation midpoint, the rate of unfolding is largely independent of urea concentration. This suggests that the transition state ensemble more closely resembles the native state in terms of solvent accessibility than the denatured state. Based on the model of a compact transition state and on an unusual structural feature of CspA, a solvent-exposed cluster of aromatic side chains, we propose a novel folding mechanism for CspA. We have also investigated the possible complications that may arise from attaching polyhistidine affinity tags to the carboxy and amino termini of CspA.  相似文献   

14.
Circular dichroism was used to monitor the thermal unfolding of ribonuclease A in 50% aqueous methanol. The spectrum of the protein at temperatures below -10 degrees C (pH* 3.0) was essentially identical to that of native ribonuclease A in aqueous solution. The spectrum of the thermally denatured material above 70 degrees C revealed some residual secondary structure in comparison to protein unfolded by 5 M Gdn.HCl at 70 degrees C in the presence or absence of methanol. The spectra as a function of temperature were deconvoluted to determine the contributions of different types of secondary structure. The position of the thermal unfolding transition as monitored by alpha-helix, with a midpoint at 38 degrees C, was at a much higher temperature than that monitored by beta-sheet, 26 degrees C, which also corresponded to that observed by delta A286, tyrosine fluorescence and hydrodynamic radius (from light scattering measurements). Thus, the loss of beta-sheet structure is decoupled from that of alpha-helix, suggesting a step-wise unfolding of the protein. The transition observed for loss of alpha-helix coincides with the previously measured transition for His-12 by NMR from a partially folded state to the unfolded state, suggesting that the unfolding of the N-terminal helix in RNase A is lost after unfolding of the core beta-sheet during thermal denaturation. The thermally denatured protein was relatively compact, as measured by dynamic light scattering.  相似文献   

15.
Kamen DE  Griko Y  Woody RW 《Biochemistry》2000,39(51):15932-15943
Pectate lyase C (pelC) was the first protein in which the parallel beta-helix structure was recognized. The unique features of parallel beta-helix-containing proteins-a relatively simple topology and unusual interactions among side chains-make pelC an interesting protein to study with respect to protein folding. In this paper, we report studies of the unfolding equilibrium of pelC. PelC is unfolded reversibly by gdn-HCl at pH 7 and 5, as monitored by far- and near-UV CD and fluorescence. The coincidence of these spectroscopically detected transitions is consistent with a two-state transition at pH 7, but the three probes are not coincident at pH 5. No evidence was found for a loosely folded intermediate in the transition region at pH 5. At pH 7, the for unfolding is 12.2 kcal/mol, with the midpoint of the transition at 0.99 M gdn-HCl and m = 12.3 kcal/(mol.M). Thus, pelC is unusually stable and has an m value that is much larger than for typical globular proteins. Thermal denaturation of pelC has been studied by differential scanning calorimetry (DSC) and by CD. Although thermal denaturation is not reversible, valid thermodynamic data can be obtained for the unfolding transition. DeltaH(van't Hoff)/DeltaH(cal) is less than 1 for pHs between 5 and 8, with a maximum value of 0.91 at pH 7 decreasing to 0.85 at pH 8 and to 0.68 at pH 5. At all pHs studied, the excess heat capacity can be deconvoluted into two components corresponding to two-state transitions that are nearly coincident at pH 7, but deviate more at higher and lower pH. Thus, pelC appears to consist of two domains that interact strongly and unfold in a cooperative fashion at pH 7, but the cooperativity decreases at higher and lower pH. The crystal structure of pelC shows no obvious domain structure, however.  相似文献   

16.
Talbott M  Hare M  Nyarko A  Hays TS  Barbar E 《Biochemistry》2006,45(22):6793-6800
Equilibrium analyses have been performed to elucidate the role of dimerization in folding and stability of dynein light chain Tctex-1. The equilibrium unfolding transition was monitored by intrinsic fluorescence intensity, fluorescence anisotropy, and circular dichroism and was modeled as a two-state mechanism where a folded dimer dissociates to two unfolded monomers without populating thermodynamically stable monomeric or dimeric intermediates. Sedimentation equilibrium and chemical cross-linking experiments performed at increasing concentrations of denaturants show no change in the association state before the unfolding transition and are consistent with the two-state model of dissociation coupled to unfolding. A linear dependence on denaturant concentration is observed by fluorescence intensity and anisotropy before unfolding in the 0-2 M GdnCl, and 0-4 M urea concentration range. This change is not protein concentration-dependent and possibly reflects relief of quenching associated with premelting conformational disorder in the vicinity of Trp 83. The data clearly show that the dissociation-coupled unfolding mechanism of Tctex-1 is different from the three-state denaturation mechanism of its structural homologue light chain LC8. The absence of a stable monomer in Tctex-1 offers insight into its functional differences from LC8.  相似文献   

17.
The thermal denaturation of ribonuclease A has been studied by differential scanning calorimetry in the presence of 4-chlorobutan-1-ol. The thermal transitions were observed to be reversible at pH 5.5 in the presence of low concentration (up to 50 mM) of the alcohol, irreversible in the intermediate (50 mM < c < mM) and again reversible in the presence of 250 mM and higher concentrations of 4-chlorobutan-1-ol. In the presence of 50 mM 4-chlorobutan-1-ol, ribonuclease A is present in two conformational states unfolding at different temperatures. The reversible thermal transitions have been fitted to a two-state native-to-denatured mechanism. Irreversible thermal transitions have been analyzed according to two-state irreversible native-to-denatured kinetic model. Using the irreversible model, rate constant as a function of temperature and energy of activation of the irreversible process have been calculated. Circular dichroism and fluorescence spectroscopic results corroborate the DSC observations and indicate a protein conformation with poorly defined tertiary structure and high content of secondary structure in the presence of 50 mM 4-chlorobutan-1-ol at a temperature corresponding to the second transition. Similar results have been observed at pH 3.9.  相似文献   

18.
The irreversible thermal unfolding of the class A beta-lactamase I from Bacillus cereus has been investigated at pH 7.0, using differential scanning calorimetry (DSC) and inactivation kinetic techniques. DSC transitions showed a single peak with a denaturation enthalpy of 646 kJ.mol-1 and were moderately scan rate dependent, suggesting that the process was partially kinetically controlled. The inactivation kinetics at constant temperature showed that the irreversible denaturation of the enzyme occurs as the sum of two exponential terms whose amplitudes are strongly temperature dependent within the transition range so that, at the lowest temperatures within this interval, irreversible inactivation would proceed mainly through the slow phase. The fraction of irreversibly denatured enzyme (D) as a function of temperature for a given scanning rate was calculated by numerical integration of the kinetic equation with temperature, using previously determined kinetic parameters. This D form was the most populated of the unfolded states only at temperatures well above the maximum in the calorimetric transition. Combination of the results of kinetic and DSC experiments has allowed us to separate the contribution of the final D state to the excess enthalpy change from the contribution arising from the reversibly denatured forms of the enzyme (I(i), i = 1,..., n), with the resulting conclusion that the scan rate dependence of the calorimetric traces was the result of two different dynamic effects, viz., the irreversible step and a slow relaxation process during formation of the reversibly denatured intermediate states. Finally, the problems of using results obtained at a single scan rate to validate the two-state kinetic model are commented on.  相似文献   

19.
A. M. Labhardt 《Biopolymers》1981,20(7):1459-1480
The thermal-denaturation transition of ribonuclease S (RNAase S) is measured by circular dichroism at 225 nm. Only conformational transitions involving the S-peptide–S-protein complex are detected at this wavelength. Different pathways of thermal unfolding at high and low concentrations are apparent: at low concentrations the temperature of half-completion of denaturation (Tm) varies with concentration. Above a total enzyme concentration of 50 μM, Tm remains constant. The observed data can be explained on the basis of a model where the association–dissociation step occurs between S-peptide and thermally (at least partly) unfolded S-protein. The complex as a whole undergoes a major folding–unfolding transition in the course of which the S-peptide μ-helix appears to be formed. The unfolded complex is well populated in the unfolding transition region for enzyme concentrations of 100 μM or more. The model succeeds in deducing thermodynamic parameters from the thermal denaturation curves in various different ways. The values thus obtained are fully self-consistent and, moreover, consistent with the values for the apparent association constant and apparent association enthalpy as measured in enzyme-dilution experiments and by batch calorimetry.  相似文献   

20.
T R Sosnick  J Trewhella 《Biochemistry》1992,31(35):8329-8335
Using small-angle X-ray scattering and Fourier transform infrared spectroscopy, we have determined that the thermally denatured state of native ribonuclease A is on average a compact structure having residual secondary structure. Under strongly reducing conditions, the protein further unfolds into a looser structure with larger dimensions but still retains a comparable amount of secondary structure. The dimensions of the thermally and chemically denatured states of the reduced protein are different but both are more compact than is predicted for a random coil of the same length. These results demonstrate that thermal denaturation in ribonuclease A is not a simple two-state transition from a native to a completely disordered random coil state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号