首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
There are three isoforms of the inositol 1,4,5- trisphosphate receptor (InsP(3)R), each of which has a distinct effect on Ca(2+) signaling. However, it is not known whether each isoform similarly plays a distinct role in the activation of Ca(2+)-mediated events. To investigate this question, we examined the effects of each InsP(3)R isoform on transmission of Ca(2+) signals to mitochondria and induction of apoptosis. Each isoform was selectively silenced using isoform-specific small interfering RNA in Chinese hamster ovary cells, which express all three InsP(3)R isoforms. ATP-induced cytosolic Ca(2+) signaling patterns were altered, regardless of which isoform was silenced, but in a different fashion depending on the isoform. ATP also induced Ca(2+) signals in mitochondria, which were inhibited more effectively by silencing the type III InsP(3)R than by silencing either the type I or type II isoform. The type III isoform also co-localized most strongly with mitochondria. When apoptosis was induced by activation of either the extrinsic or intrinsic apoptotic pathway, induction was reduced most effectively by silencing the type III InsP(3)R. These findings provide evidence that the type III isoform of the InsP(3)R plays a special role in induction of apoptosis by preferentially transmitting Ca(2+) signals into mitochondria.  相似文献   

2.
The inositol 1,4,5-trisphosphate receptor (InsP3R) mediates Ca(2+) signaling in epithelia and regulates cellular functions such as secretion, apoptosis and cell proliferation. Loss of one or more InsP3R isoform has been implicated in disease processes such as cholestasis. Here we examined whether gain of expression of InsP3R isoforms also may be associated with development of disease. Expression of all three InsP3R isoforms was evaluated in tissue from colorectal carcinomas surgically resected from 116 patients. Type I and II InsP3Rs were seen in both normal colorectal mucosa and colorectal cancer, while type III InsP3R was observed only in colorectal cancer. Type III InsP3R expression in the advancing margins of tumors correlated with depth of invasion, lymph node metastasis, liver metastasis, and TNM stage. Heavier expression of type III InsP3R also was associated with decreased 5-year survival. shRNA knockdown of type III InsP3R in CACO-2 colon cancer cells enhanced apoptosis, while over-expression of the receptor decreased apoptosis. Thus, type III InsP3R becomes expressed in colon cancer, and its expression level is directly related to aggressiveness of the tumor, which may reflect inhibition of apoptosis by the receptor. These findings suggest a previously unrecognized role for Ca(2+) signaling via this InsP3R isoform in colon cancer.  相似文献   

3.
The inositol 1,4,5-trisphosphate receptor (InsP(3)R) is an intracellular Ca(2+)-release channel localized in endoplasmic reticulum (ER) with a central role in complex Ca(2+) signaling in most cell types. A family of InsP(3)Rs encoded by several genes has been identified with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. This diversity suggests that cells require distinct InsP(3)Rs, but the functional correlates of this diversity are largely unknown. Lacking are single-channel recordings of the recombinant type 3 receptor (InsP(3)R-3), a widely expressed isoform also implicated in plasma membrane Ca(2+) influx and apoptosis. Here, we describe functional expression and single-channel recording of recombinant rat InsP(3)R-3 in its native membrane environment. The approach we describe suggests a novel strategy for expression and recording of recombinant ER-localized ion channels in the ER membrane. Ion permeation and channel gating properties of the rat InsP(3)R-3 are strikingly similar to those of Xenopus type 1 InsP(3)R in the same membrane. Using two different two-electrode voltage clamp protocols to examine calcium store-operated calcium influx, no difference in the magnitude of calcium influx was observed in oocytes injected with rat InsP(3)R-3 cRNA compared with control oocytes. Our results suggest that if cellular expression of multiple InsP(3)R isoforms is a mechanism to modify the temporal and spatial features of [Ca(2+)](i) signals, then it must be achieved by isoform-specific regulation or localization of various types of InsP(3)Rs that have relatively similar Ca(2+) permeation properties.  相似文献   

4.
Molecular basis for pacemaker cells in epithelia   总被引:2,自引:0,他引:2  
Intercellular signaling is highly coordinated in excitable tissues such as heart, but the organization of intercellular signaling in epithelia is less clear. We examined Ca(2+) signaling in hepatoma cells expressing the hepatocyte gap junction protein connexin32 (cx32) or the cardiac gap junction protein cx43, plus a fluorescently tagged V(1a) vasopressin receptor (V(1a)R). Release of inositol 1,4,5-trisphosphate (InsP(3)) in wild type cells increased Ca(2+) in the injected cell but not in neighboring cells, while the Ca(2+) signal spread to neighbors when gap junctions were expressed. Photorelease of caged Ca(2+) rather than InsP(3) resulted in a small increase in Ca(2+) that did not spread to neighbors with or without gap junctions. However, photorelease of Ca(2+) in cells stimulated with low concentrations of vasopressin resulted in a much larger increase in Ca(2+), which spread to neighbors via gap junctions. Cells expressing tagged V(1a)R similarly had increased sensitivity to vasopressin, and could signal to neighbors via gap junctions. Higher concentrations of vasopressin elicited Ca(2+) signals in all cells. In cx32 or cx43 but not in wild type cells, this signaling was synchronized and began in cells expressing the tagged V(1a)R. Thus, intercellular Ca(2+) signals in epithelia are organized by three factors: 1) InsP(3) must be generated in each cell to support a Ca(2+) signal in that cell; 2) gap junctions are necessary to synchronize Ca(2+) signals among cells; and 3) cells with relatively increased expression of hormone receptor will initiate Ca(2+) signals and thus serve as pacemakers for their neighbors. Together, these factors may allow epithelia to act in an integrated, organ-level fashion rather than as a collection of isolated cells.  相似文献   

5.
The inositol 1,4,5-trisphosphate receptors   总被引:8,自引:0,他引:8  
Bezprozvanny I 《Cell calcium》2005,38(3-4):261-272
The inositol (1,4,5)-trisphosphate receptors (InsP3R) are the intracellular calcium (Ca2+) release channels that play a key role in Ca2+ signaling in cells. Three InsP3R isoforms-InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals. A single InsP3R isoform is expressed in Drosophila melanogaster (DmInsP3R) and Caenorhabditis elegans (CeInsP3R). The progress made during last decade towards understanding the function and the properties of the InsP3R is briefly reviewed in this chapter. The main emphasis is on studies that revealed structural determinants responsible for the ligand recognition by the InsP3R, ion permeability of the InsP3R, modulation of the InsP3R by cytosolic Ca2+, ATP and PKA phosphorylation and on the recently identified InsP3R-binding partners. The main focus is on the InsP3R1, but the recent information about properties of other InsP3R isoforms is also discussed.  相似文献   

6.
The inositol 1,4,5-trisphosphate receptor (InsP3R) is an intracellular Ca2+ release channel which upon activation initiates many cellular functions. Multiple InsP3R subtypes are expressed in most cell types but the physiological significance of this heterogeneity is poorly understood. This study has directly compared the functional properties of the three different InsP3R isoforms by analyzing their InsP3-induced Ca2+ release (IICR) properties in cell lines which predominantly express each isoform subtype. The InsP3-dependence of the amount or extent of IICR was InsP3R isoform-specific, with the type III isoform having the lowest affinity with respect to Ca2+ release. The transient kinetics of IICR, measured using stopped-flow spectrofluorimetry, however, were similar for all three InsP3R isoforms. At maximal InsP3 concentrations (20 microM) the rate constants where between 0.8 and 1.0 s(-1) for the fast phase and 0.25-0.45 s(-1) for the slow phase. The concentration of InsP3 required to induce half-maximal rates of Ca2+ release (EC50) were also similar for the three isoforms (0.2-0.4 microM for the fast phase and 0.75-0.95 microM for the slow phase). These results indicate the InsP3R channel does not significantly differ functionally in terms of Ca2+ release rates between isoforms. The temporal and spatial features of intracellular Ca2+ signals are thus probably achieved through InsP3R isoform-specific regulation or localization rather than their intrinsic Ca2+ efflux properties.  相似文献   

7.
《Cell calcium》2011,49(6):315-323
The inositol 1,4,5-trisphosphate receptor (InsP3R) mediates Ca2+ signaling in epithelia and regulates cellular functions such as secretion, apoptosis and cell proliferation. Loss of one or more InsP3R isoform has been implicated in disease processes such as cholestasis. Here we examined whether gain of expression of InsP3R isoforms also may be associated with development of disease. Expression of all three InsP3R isoforms was evaluated in tissue from colorectal carcinomas surgically resected from 116 patients. Type I and II InsP3Rs were seen in both normal colorectal mucosa and colorectal cancer, while type III InsP3R was observed only in colorectal cancer. Type III InsP3R expression in the advancing margins of tumors correlated with depth of invasion, lymph node metastasis, liver metastasis, and TNM stage. Heavier expression of type III InsP3R also was associated with decreased 5-year survival. shRNA knockdown of type III InsP3R in CACO-2 colon cancer cells enhanced apoptosis, while over-expression of the receptor decreased apoptosis. Thus, type III InsP3R becomes expressed in colon cancer, and its expression level is directly related to aggressiveness of the tumor, which may reflect inhibition of apoptosis by the receptor. These findings suggest a previously unrecognized role for Ca2+ signaling via this InsP3R isoform in colon cancer.  相似文献   

8.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP3R) is an endoplasmic reticulum-localized Ca2+ -release channel that controls complex cytoplasmic Ca(2+) signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 Ins3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of approximately 3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 microM under saturating (10 microM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP(3) concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of approximately 4. InsP(3) activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3-induced Ca2+ release and low gain Ca2+ -induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms.  相似文献   

9.
In response to stimulation at the plasma membrane, hepatocellular Ca(2+) signals are fast and precise and lead to rapid local changes in cytoplasmic free Ca(2+) concentration. These changes result from the opening of the inositol 1,4,5-trisphosphate receptor (InsP(3)R), which is a four-subunit intracellular InsP(3)-gated channel that releases Ca(2+) from the stores. To investigate the molecular mechanism underlying interactions between the InsP(3)R subunits, we cloned the predominant hepatocellular isoform, InsP(3)R isoform 2 (InsP(3)R2), and screened for interactions using the yeast two-hybrid assay. We found that the C-terminal domain of rat InsP(3)R2 interacts with itself, and that the cytoplasmic part preceding the first transmembrane domain, a region near a Ca(2+)-binding site, also interacts with itself. These interactions were confirmed by pull-down experiments. The C-terminal domain of InsP(3)R2 is also able to interact with the C-termini of rat InsP(3)R1 and InsP(3)R3. These results advance our understanding of the molecular mechanisms that underlie the oligomerization and interactions of the InsP(3)R subunits during the opening/closing of the Ca(2+) channel.  相似文献   

10.
Many hormones and neurotransmitters raise intracellular calcium (Ca(2+)) by generating InsP(3) and activating the inositol 1,4, 5-trisphosphate receptor (InsP(3)R). Multiple isoforms with distinct InsP(3) binding properties () have been identified (). The type III InsP(3)R lacks Ca(2+)-dependent inhibition, a property that makes it ideal for signal initiation (). Regulation of the type III InsP(3)R by InsP(3) and ATP was explored in detail using planar lipid bilayers. In comparison to the type I InsP(3)R, the type III InsP(3)R required a higher concentration of InsP(3) to reach maximal channel activity (EC(50) of 3.2 microM versus 0.5 microM for the types III and I InsP(3)R, respectively). However, the type III InsP(3)R did reach a 2.5-fold higher level of activity. Although activation by InsP(3) was isoform-specific, regulation by ATP was similar for both isoforms. In the presence of 2 microM InsP(3), low ATP concentrations (<6 mM) increased the open probability and mean open time. High ATP concentrations (>6 mM) decreased channel activity. These results illustrate the complex nature of type III InsP(3)R regulation. Enhanced channel activity in the presence of high InsP(3) may be important during periods of prolonged stimulation, whereas allosteric modulation by ATP may help to modulate intracellular Ca(2+) signaling.  相似文献   

11.
It has been proposed that the inositol 1,4,5-trisphosphate receptor (InsP(3)R) type III acts as a trigger for InsP(3)-mediated calcium (Ca(2+)) signaling, because this InsP(3) isoform lacks feedback inhibition by cytosolic Ca(2+). We tested this hypothesis in RIN-m5F cells, which express predominantly the type III receptor. Extracellular ATP increases Ca(2+) in these cells, and we found that this effect is independent of extracellular Ca(2+) but is blocked by the InsP(3)R antagonist heparin. There was a dose-dependent increase in the number of cells responding to ATP and two-photon flash photolysis of caged-Ca(2+) heightened the sensitivity of RIN-m5F cells to this increase. These findings provide evidence that Ca(2+) increases the sensitivity of the InsP(3)R type III in intact cells and supports the idea that this isoform can act as a trigger for hormone-induced Ca(2+) signaling.  相似文献   

12.
ATP enhances Ca(2+) release from inositol (1,4,5)-trisphosphate receptors (InsP(3)R). However, the three isoforms of InsP(3)R are reported to respond to ATP with differing sensitivities. Ca(2+) release through InsP(3)R1 is positively regulated at lower ATP concentrations than InsP(3)R3, and InsP(3)R2 has been reported to be insensitive to ATP modulation. We have reexamined these differences by studying the effects of ATP on InsP(3)R2 and InsP(3)R3 expressed in isolation on a null background in DT40 InsP(3)R knockout cells. We report that the Ca(2+)-releasing activity as well as the single channel open probability of InsP(3)R2 was enhanced by ATP, but only at submaximal InsP(3) levels. Further, InsP(3)R2 was more sensitive to ATP modulation than InsP(3)R3 under similar experimental conditions. Mutations in the ATPB sites of InsP(3)R2 and InsP(3)R3 were generated, and the functional consequences of these mutations were tested. Surprisingly, mutation of the ATPB site in InsP(3)R3 had no effect on ATP modulation, suggesting an additional locus for the effects of ATP on this isoform. In contrast, ablation of the ATPB site of InsP(3)R2 eliminated the enhancing effects of ATP. Furthermore, this mutation had profound effects on the patterns of intracellular calcium signals, providing evidence for the physiological significance of ATP binding to InsP(3)R2.  相似文献   

13.
Intracellular calcium concentration ([Ca(2+)](i)) signals are central to the mechanisms underlying fluid and protein secretion in pancreatic and parotid acinar cells. Calcium release was studied in natively buffered cells following focal laser photolysis of caged molecules. Focal photolysis of caged-inositol 1,4,5 trisphosphate (InsP(3)) in the apical region resulted in Ca(2+) release from the apical trigger zone and, after a latent period, the initiation of an apical-to-basal Ca(2+) wave. The latency was longer and the wave speed significantly slower in pancreatic compared with parotid cells. Focal photolysis in basal regions evoked only limited Ca(2+) release at the photolysis site and never resulted in a propagating wave. Instead, an apical-to-basal wave was initiated following a latent period. Again, the latent period was significantly longer under all conditions in pancreas than parotid. Although slower in pancreas than parotid, once initiated, the apical-to-basal wave speed was constant in a particular cell type. Photo release of caged-Ca(2+) failed to evoke a propagating Ca(2+) wave in either cell type. However, the kinetics of the Ca(2+) signal evoked following photolysis of caged-InsP(3) were significantly dampened by ryanodine in parotid but not pancreas, indicating a more prominent functional role for ryanodine receptor (RyR) following InsP(3) receptor (InsP(3)R) activation. These data suggest that differing expression levels of InsP(3)R, RyR, and possibly cellular buffering capacity may contribute to the fast kinetics of Ca(2+) signals in parotid compared with pancreas. These properties may represent a specialization of the cell type to effectively stimulate Ca(2+)-dependent effectors important for the differing primary physiological role of each gland.  相似文献   

14.
Secretagogue-stimulated intracellular Ca(2+) signals are fundamentally important for initiating the secretion of the fluid and ion component of saliva from parotid acinar cells. The Ca(2+) signals have characteristic spatial and temporal characteristics, which are defined by the specific properties of Ca(2+) release mediated by inositol 1,4,5-trisphosphate receptors (InsP(3)R). In this study we have investigated the role of adenine nucleotides in modulating Ca(2+) release in mouse parotid acinar cells. In permeabilized cells, the Ca(2+) release rate induced by submaximal [InsP(3)] was increased by 5 mM ATP. Enhanced Ca(2+) release was not observed at saturating [InsP(3)]. The EC(50) for the augmented Ca(2+) release was ~8 μM ATP. The effect was mimicked by nonhydrolysable ATP analogs. ADP and AMP also potentiated Ca(2+) release but were less potent than ATP. In acini isolated from InsP(3)R-2-null transgenic animals, the rate of Ca(2+) release was decreased under all conditions but now enhanced by ATP at all [InsP(3)]. In addition the EC(50) for ATP potentiation increased to ~500 μM. These characteristics are consistent with the properties of the InsP(3)R-2 dominating the overall features of InsP(3)R-induced Ca(2+) release despite the expression of all isoforms. Finally, Ca(2+) signals were measured in intact parotid lobules by multiphoton microscopy. Consistent with the release data, carbachol-stimulated Ca(2+) signals were reduced in lobules exposed to experimental hypoxia compared with control lobules only at submaximal concentrations. Adenine nucleotide modulation of InsP(3)R in parotid acinar cells likely contributes to the properties of Ca(2+) signals in physiological and pathological conditions.  相似文献   

15.
Inositol 1,4,5-trisphosphate receptors (InsP(3)R) play a key role in intracellular calcium (Ca(2+)) signaling. Three InsP(3)R isoforms are expressed in mammals. Type 1 InsP(3)R (InsP(3)R1) is a predominant neuronal isoform. Neuronal InsP(3)R1 is one of the major substrates of protein kinase A (PKA) phosphorylation. In our previous study (Tang, T. S., Tu, H., Wang, Z., and Bezprozvanny, I. (2003) J. Neurosci. 23, 403-415) we discovered a direct association between InsP(3)R1 and protein phosphatase 1 alpha (PP1 alpha). In functional experiments we demonstrated that phosphorylation by PKA activates InsP(3)R1 and that dephosphorylation by PP1 alpha inhibits InsP(3)R1. To extend these findings, here we investigated the possibility of InsP(3)R1-PKA association. In a series of biochemical experiments we demonstrate the following findings. 1) InsP(3)R1 and PKA associate in the brain. 2) InsP(3)R1-PKA association is mediated by the AKAP9 (Yotiao) multi-functional PKA anchoring protein. 3) InsP(3)R1-AKAP9 association is mediated via the leucine/isoleucine zipper (LIZ) motif in the InsP(3)R1 coupling domain and the fourth LIZ motif in AKAP9. 4) The InsP(3)R association with AKAP9 is specific for type 1 InsP(3)R. 5) Both the SII(+) and the SII(-) coupling domain splice variants of InsP(3)R1 bind to AKAP9. 6) Binding to AKAP9 promotes association of neuronal InsP(3)R1 with the NR1 NMDA receptor; and 7) neuronal InsP(3)R1 associate with PP1 directly via carboxy-terminus and indirectly via AKAP9. The obtained results advance our understanding of cross-talk between cAMP and InsP(3)/Ca(2+) signaling pathways in the brain.  相似文献   

16.
The effects of protein kinase A (PKA) on the inositol 1,4,5-trisphosphate (InsP(3)) receptor isoforms type I and type III were studied. The effects of PKA on the extent and rate constants for InsP(3)-induced Ca(2+) release (IICR) were different for the two isoforms. The effects of PKA on the type I isoform showed a biphasic relationship dependent upon the concentration of PKA used. At low concentrations of PKA (<50U/ml), both the extent and rate constants for IICR increased, while at higher concentrations (>200U/ml) the extent and rate constants decreased. The type III isoform showed only an increase in the extent of IICR and not in the rate constants. The effects of PKA on the type I InsP(3) receptor using single channel electrophysiological studies were also investigated. The stimulatory effect of PKA is due to an increase in conductance levels and not to a change in the mean open time of the channel.  相似文献   

17.
A family of Ca(2+)-binding proteins (CaBPs) was shown to bind to the inositol 1,4,5-trisphosphate receptor (InsP(3)R) Ca(2+) release channel and gate it in the absence of InsP(3), establishing them as protein ligands (Yang, J., McBride, S., Mak, D.-O. D., Vardi, N., Palczewski, K., Haeseleer, F., and Foskett, J. K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7711-7716). However, the neuronally restricted expression of CaBP and its inhibition of InsP(3)R-mediated Ca(2+) signaling when overexpressed (Kasri, N. N., Holmes, A. M., Bultynck, G., Parys, J. B., Bootman, M. D., Rietdorf, K., Missiaen, L., McDonald, F., De Smedt, H., Conway, S. J., Holmes, A. B., Berridge, M. J., and Roderick, H. L. (2004) EMBO J. 23, 312-321; Haynes, L. P., Tepikin, A. V., and Burgoyne, R. D. (2004) J. Biol. Chem. 279, 547-555) have raised questions regarding the functional implications of this regulation. We have discovered the Ca(2+)-binding protein CIB1 (calmyrin) as a ubiquitously expressed ligand of the InsP(3)R. CIB1 binds to all mammalian InsP(3)R isoforms in a Ca(2+)-sensitive manner dependent on its two functional EF-hands and activates InsP(3)R channel gating in the absence of InsP(3). In contrast, overexpression of CIB1 or CaBP1 attenuated InsP(3)R-dependent Ca(2+) signaling, and in vitro pre-exposure to CIB1 reduced the number of channels available for subsequent stimulation by InsP(3). These results establish CIB1 as a ubiquitously expressed activating and inhibiting protein ligand of the InsP(3)R.  相似文献   

18.
Inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) were recently demonstrated to be activated independently of InsP(3) by a family of calmodulin (CaM)-like neuronal Ca(2+)-binding proteins (CaBPs). We investigated the interaction of both naturally occurring long and short CaBP1 isoforms with InsP(3)Rs, and their functional effects on InsP(3)R-evoked Ca(2+) signals. Using several experimental paradigms, including transient expression in COS cells, acute injection of recombinant protein into Xenopus oocytes and (45)Ca(2+) flux from permeabilised COS cells, we demonstrated that CaBPs decrease the sensitivity of InsP(3)-induced Ca(2+) release (IICR). In addition, we found a Ca(2+)-independent interaction between CaBP1 and the NH(2)-terminal 159 amino acids of the type 1 InsP(3)R. This interaction resulted in decreased InsP(3) binding to the receptor reminiscent of that observed for CaM. Unlike CaM, however, CaBPs do not inhibit ryanodine receptors, have a higher affinity for InsP(3)Rs and more potently inhibited IICR. We also show that phosphorylation of CaBP1 at a casein kinase 2 consensus site regulates its inhibition of IICR. Our data suggest that CaBPs are endogenous regulators of InsP(3)Rs tuning the sensitivity of cells to InsP(3).  相似文献   

19.
Agonist-induced intracellular calcium signals may propagate as intercellular Ca2+ waves in multicellular systems as well as in intact organs. The mechanisms initiating intercellular Ca2+ waves in one cell and determining their direction are unknown. We investigated these mechanisms directly on fura2-loaded multicellular systems of rat hepatocytes and on cell populations issued from peripheral (periportal) and central (perivenous) parts of the hepatic lobule. There was a gradient in vasopressin sensitivity along connected cells as demonstrated by low vasopressin concentration challenge. Interestingly, the intercellular sensitivity gradient was abolished either when D-myo-inositol 1,4, 5-trisphosphate (InsP3) receptor was directly stimulated after flash photolysis of caged InsP3 or when G proteins were directly stimulated with AlF4-. The gradient in vasopressin sensitivity in multiplets was correlated with a heterogeneity of vasopressin sensitivity in the hepatic lobule. There were more vasopressin-binding sites, vasopressin-induced InsP3 production and V1a vasopressin receptor mRNAs in perivenous than in periportal cells. Therefore, we propose that hormone receptor density determines the cellular sensitivity gradient from the peripheral to the central zones of the liver cell plate, thus the starting cell and the direction of intercellular Ca2+ waves, leading to directional activation of Ca2+-dependent processes.  相似文献   

20.
Calcium release through inositol (1,4,5)-trisphosphate receptors (InsP(3)R) is the primary signal driving digestive enzyme and fluid secretion from pancreatic acinar cells. The type 2 (InsP(3)R2) and type 3 (InsP(3)R3) InsP(3)R are the predominant isoforms expressed in acinar cells and are required for proper exocrine gland function. Both InsP(3)R2 and InsP(3)R3 are positively regulated by cytosolic ATP, but InsP(3)R2 is 10-fold more sensitive than InsP(3)R3 to this form of modulation. In this study, we examined the role of InsP(3)R2 in setting the sensitivity of InsP(3)-induced Ca(2+) release (IICR) to ATP in pancreatic acinar cells. IICR was measured in permeabilized acinar cells from wild-type (WT) and InsP(3)R2 knock-out (KO) mice. ATP augmented IICR from WT pancreatic cells with an EC(50) of 38 mum. However, the EC(50) was 10-fold higher in acinar cells isolated from InsP(3)R2-KO mice, indicating a role for InsP(3)R2 in setting the sensitivity of IICR to ATP. Consistent with this idea, heterologous expression of InsP(3)R2 in RinM5F cells, which natively express predominately InsP(3)R3, increased the sensitivity of IICR to ATP. Depletion of ATP attenuated agonist-induced Ca(2+) signaling in WT pancreatic acinar cells. This effect was more profound in acinar cells prepared from InsP(3)R2-KO mice. These data suggest that the sensitivity of IICR to ATP depletion is regulated by the particular complement of InsP(3)R expressed in an individual cell. The effects of metabolic stress on intracellular Ca(2+) signals can therefore be determined by the relative amount of InsP(3)R2 expressed in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号