首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated cis-acting mutations in the gene encoding the yeast vacuolar protein carboxypeptidase Y (CPY) that result in missorting and aberrant secretion of up to 95% of newly synthesized CPY. The CPY polypeptides synthesized by these mutants use the late secretory pathway to exit the cell, since the late-acting sec1 mutation prevents their secretion. The mutant versions of CPY are secreted as the proCPY zymogen and are enzymatically activatable in vivo and in vitro. All the mutations, including small deletions and an amino acid substitution, map to the amino-terminal propeptide region and define a discrete yeast vacuolar localization domain whose integrity is required for efficient sorting of the CPY zymogen. Thus, the N-terminal propeptide of CPY carries out at least three functions: it mediates translocation across the endoplasmic reticulum, renders the enzyme inactive during transit, and targets the molecule to the vacuole.  相似文献   

2.
M Seeger  G S Payne 《The EMBO journal》1992,11(8):2811-2818
We have investigated the role of clathrin in vacuolar protein sorting using yeast strains harboring a temperature-sensitive allele of clathrin heavy chain (chc1-ts). After a 5 min incubation at the non-permissive temperature (37 degrees C), the chc1-ts strains displayed a severe defect in the sorting of lumenal vacuolar proteins. Sorting of a vacuolar membrane protein, alkaline phosphatase, and transport to the surface of a cell wall protein, was not affected at 37 degrees C. In chc1-ts cells incubated at 37 degrees C, secretion of the missorted lumenal vacuolar protein carboxypeptidase Y (CPY) was blocked by the sec1 mutation which prevents fusion of secretory vesicles to the plasma membrane. Unexpectedly, chc1-ts cells incubated for extended periods at 37 degrees C regained the ability to sort CPY. Cells carrying deletions of the CHC1 gene (chc1 delta) also sorted CPY to the vacuole even when subjected to temperature shifts. Vacuolar delivery of CPY in chc1 delta cells was not blocked by sec1 suggesting that transport does not occur by secretion and endocytosis. These results provide in vivo evidence that clathrin plays a role in the Golgi complex in sorting of vacuolar proteins from the secretory pathway. With time, however, yeast cells lacking functional clathrin heavy chains are able to adapt in a way that allows restoration of vacuolar protein sorting in the Golgi complex. These conclusions clarify previous studies of chc1 delta cells which raised the possibility that clathrin is not involved in vacuolar protein sorting.  相似文献   

3.
To further our studies of protein sorting and biogenesis of the lysosome-like vacuole in yeast, we have isolated spontaneous mutations in 11 new VPL complementation groups, as well as additional alleles of the eight previously described VPL genes. These mutants were identified by selecting for cells that mislocalize vacuolar proteins to the cell surface. Morphological examination of the vpl mutants indicated that most contain vacuoles of normal appearance; however, some of the mutants generally lack a large vacuole, and instead accumulate smaller organelles. Of the 19 VPL complementation groups, 12 were found to be identical to 12 of 33 VPT complementation groups identified in a separate study. Moreover, the end1 mutant and all of the previously reported pep mutants, with the exception of pep4, were found to exhibit a profound vacuolar protein sorting defect, and complementation tests between the PEP, VPL VPT and END1 groups demonstrated that there are extensive overlaps between these groups. Collectively, mutants in these four collections define 49 complementation groups required to deliver or retain soluble vacuolar enzymes, including carboxypeptidase Y (CPY) and proteinase A. We have also isolated 462 new mutants that lack normal levels of vacuolar CPY activity. Among these latter mutants, only pep4 mutants were found to be specifically defective in vacuolar zymogen activation. We conclude that there is a large number of gene products required for sorting or retention of vacuolar proteins in yeast, and only a single gene, PEP4, that is essential for activation of CPY and other vacuolar zymogens.  相似文献   

4.
L M Johnson  V A Bankaitis  S D Emr 《Cell》1987,48(5):875-885
We have mapped a sequence determinant in the vacuolar glycoprotein carboxypeptidase Y (CPY) that directs intracellular sorting of this enzyme. Through the study of hybrid proteins, consisting of amino-terminal segments of CPY fused to the secretory enzyme invertase, we have found that the N-terminal 50 amino acids of CPY are sufficient to direct delivery of a CPY-Inv hybrid protein to the yeast vacuole. Our data suggest that this 50 amino acid segment of CPY contains two distinct functional domains; an N-terminal signal peptide followed by a segment of 30 amino acids that contains the vacuolar sorting signal. Deletion of this putative vacuole sorting signal from an otherwise wild-type CPY protein leads to missorting of CPY. Furthermore, examination of the Asn-linked oligosaccharides present on CPY and CPY-Inv hybrid proteins suggests that an additional determinant in CPY specifies the extent to which these proteins are glycosylated in the Golgi complex.  相似文献   

5.
The Saccharomyces cerevisiae PHO8 gene product, repressible alkaline phosphatase (ALP), is a glycoprotein enzyme that is localized to the yeast vacuole (lysosome). Using antibodies raised against synthetic peptides corresponding to two distinct hydrophilic sequences in ALP, we have been able to examine the biosynthesis, sorting and processing of this protein. ALP is synthesized as an inactive precursor containing a C-terminal propeptide that is cleaved from the protein in a PEP4-dependent manner. The precursor and mature protein are anchored in the membrane by an N-terminal hydrophobic domain that also appears to function as an uncleaved internal signal sequence. ALP has the topology of a type-II integral membrane protein containing a short basic N-terminal cytoplasmic tail that is accessible to exogenous protease when associated both with the endoplasmic reticulum and the vacuole. Similar to the soluble vacuolar hydrolases carboxypeptidase Y (CPY) and proteinase A (PrA), ALP transits through the early stages of the secretory pathway prior to vacuolar delivery. Two observations indicate, however, that ALP is localized to the vacuole by a mechanism which is in part different from that used by CPY and PrA: (i) maturation of proALP, which is indicative of vacuolar delivery, is less sensitive than CPY and PrA to the defects exhibited by certain of the vacuolar protein sorting (vps) mutants; and (ii) maturation of proALP proceeds normally in the presence of a potent vacuolar ATPase inhibitor, bafilomycin A1, which is known to block vacuole acidification and leads to the mis-sorting and secretion of precursor forms of CPY and PrA. These results indicate that ALP will be a useful model protein for studies of membrane protein sorting in yeast.  相似文献   

6.
We have constructed a series of mutations in the signal sequence of the yeast vacuolar protein carboxypeptidase Y (CPY), and have used pulse-chase radiolabeling and immunoprecipitation to examine the in vivo effects of these mutations on the entry of the mutant CPY proteins into the secretory pathway. We find that introduction of a negatively charged residue, aspartate, into the hydrophobic core of the signal sequence has no apparent effect on signal sequence function. In contrast, internal in-frame deletions within the signal sequence cause CPY to be synthesized as unglycosylated precursors. These are slowly and inefficiently converted to glycosylated precursors that are indistinguishable from the glycosylated forms produced from the wild-type gene. These precursors are converted to active CPY in a PEP4-dependent manner, indicating that they are correctly localized to the vacuole. Surprisingly, a deletion mutation that removes the entire CPY signal sequence has a similar effect: unglycosylated precursor accumulates in cells carrying this mutant gene, and greater than 10% of it is posttranslationally glycosylated. Thus, the amino-terminal signal sequence of CPY, while important for translocation efficiency, is not absolutely required for the translocation of this protein.  相似文献   

7.
The GGAs (Golgi-localized, gamma-ear-containing, ARF-binding proteins) are a family of multidomain adaptor proteins involved in protein sorting at the trans-Golgi network of eukaryotic cells. Here we present results from a functional characterization of the two Saccharomyces cerevisiae GGAs, Gga1p and Gga2p. We show that deletion of both GGA genes causes defects in sorting of carboxypeptidase Y (CPY) and proteinase A to the vacuole, vacuolar morphology, and maturation of alpha-factor. A structure-function analysis reveals a requirement of the VHS, GAT, and hinge for function, while the GAE domain is less important. We identify putative clathrin-binding motifs in the hinge domain of both yeast GGAs. These motifs are shown to mediate clathrin binding in vitro. While mutation of these motifs alone does not block function of the GGAs in vivo, combining these mutations with truncations of the hinge and GAE domains diminishes function, suggesting functional cooperation between different clathrin-binding elements. Thus, these observations demonstrate that the yeast GGAs play important roles in the CPY pathway, vacuole biogenesis, and alpha-factor maturation and identify structural determinants that are critical for these functions.  相似文献   

8.
Organelle acidification plays a demonstrable role in intracellular protein processing, transport, and sorting in animal cells. We investigated the relationship between acidification and protein sorting in yeast by treating yeast cells with ammonium chloride and found that this lysosomotropic agent caused the mislocalization of a substantial fraction of the newly synthesized vacuolar (lysosomal) enzyme proteinase A (PrA) to the cell surface. We have also determined that a subset of the vpl mutants, which are deficient in sorting of vacuolar proteins (Rothman, J. H., and T. H. Stevens. 1986. Cell. 47:1041-1051; Rothman, J. H., I. Howald, and T. H. Stevens. EMBO [Eur. Mol. Biol. Organ.] J. In press), failed to accumulate the lysosomotropic fluorescent dye quinacrine within their vacuoles, mimicking the phenotype of wild-type cells treated with ammonium. The acidification defect of vpl3 and vpl6 mutants correlated with a marked deficiency in vacuolar ATPase activity, diminished levels of two immunoreactive subunits of the protontranslocating ATPase (H+-ATPase) in purified vacuolar membranes, and accumulation of the intracellular portion of PrA as the precursor species. Therefore, some of the VPL genes are required for the normal function of the yeast vacuolar H+-ATPase complex and may encode either subunits of the enzyme or components required for its assembly and targeting. Collectively, these findings implicate a critical role for acidification in vacuolar protein sorting and zymogen activation in yeast, and suggest that components of the yeast vacuolar acidification system may be identified by examining mutants defective in sorting of vacuolar proteins.  相似文献   

9.
Gene dosage-dependent secretion of yeast vacuolar carboxypeptidase Y   总被引:50,自引:22,他引:28       下载免费PDF全文
The structural gene for yeast vacuolar carboxypeptidase Y (PRC1) has been cloned by complementation of the prc1-1 mutation. As much as an eightfold elevation in the level of carboxypeptidase Y (CPY) results when a multiple-copy plasmid containing the PRC1 gene is introduced into yeast. Unlike the situation with a single copy of PRC1 in which newly synthesized CPY is efficiently localized to the vacuole, plasmid-directed overproduction results in secretion of greater than 50% of the protein as the precursor form. Secretion is blocked in a mutant that is defective at a late stage in the transport of periplasmic proteins. Unlike normal cell surface glycoproteins, secreted CPY precursor acquires no additional oligosaccharide modifications beyond those that accompany normal transport to the vacuole. In the periplasm, the CPY precursor is proteolytically activated to an enzymatically active form by an enzyme that is unrelated to the vacuolar processing enzyme. These findings suggest that proper sorting and transport of CPY is saturable. This may reflect limiting amounts of a CPY-sorting receptor, or of CPY-modifying machinery that is essential for recognition by such a receptor.  相似文献   

10.
The mechanism of cargo sorting at the trans-Golgi network (TGN) for secretion is poorly understood. We previously reported the involvement of the actin-severing protein cofilin and the Ca(2+) ATPase secretory pathway calcium ATPase 1 (SPCA1) in the sorting of soluble secretory cargo at the TGN in mammalian cells. Now we report that cofilin in yeast is required for export of selective secretory cargo at the late Golgi membranes. In cofilin mutant (cof1-8) cells, the cell wall protein Bgl2 was secreted at a reduced rate and retained in a late Golgi compartment, whereas the plasma membrane H(+) ATPase Pma1, which is transported in the same class of carriers, reached the cell surface. In addition, sorting of carboxypeptidase Y (CPY) to the vacuole was delayed, and CPY was secreted from cof1-8 cells. Loss of the yeast orthologue of SPCA1 (Pmr1) exhibited similar sorting defects and displayed synthetic sickness with cof1-8. In addition, overexpression of PMR1 restored Bgl2 secretion in cof1-8 cells. These findings highlight the conserved role of cofilin and SPCA1/Pmr1 in sorting of the soluble secretory proteins at the TGN/late Golgi membranes in eukaryotes.  相似文献   

11.
VPS10 (Vacuolar Protein Sorting) encodes a large type I transmembrane protein (Vps10p), involved in the sorting of the soluble vacuolar hydrolase carboxypeptidase Y (CPY) to the Saccharomyces cerevisiae lysosome-like vacuole. Cells lacking Vps10p missorted greater than 90% CPY and 50% of another vacuolar hydrolase, PrA, to the cell surface. In vitro equilibrium binding studies established that the 1,380-amino acid lumenal domain of Vps10p binds CPY precursor in a 1:1 stoichiometry, further supporting the assignment of Vps10p as the CPY sorting receptor. Vps10p has been immunolocalized to the late-Golgi compartment where CPY is sorted away from the secretory pathway. Vps10p is synthesized at a rate 20-fold lower that that of its ligand CPY, which in light of the 1:1 binding stoichiometry, requires that Vps10p must recycle and perform multiple rounds of CPY sorting. The 164-amino acid Vps10p cytosolic domain is involved in receptor trafficking, as deletion of this domain resulted in delivery of the mutant Vps10p to the vacuole, the default destination for membrane proteins in yeast. A tyrosine-based signal (YSSL80) within the cytosolic domain enables Vps10p to cycle between the late-Golgi and prevacuolar/endosomal compartments. This tyrosine-based signal is homologous to the recycling signal of the mammalian mannose-6-phosphate receptor. A second yeast gene, VTH2, encodes a protein highly homologous to Vps10p which, when over-produced, is capable of suppressing the CPY and PrA missorting defects of a vps10 delta strain. These results indicate that a family of related receptors act to target soluble hydrolases to the vacuole.  相似文献   

12.
Using a selection for spontaneous mutants that mislocalize a vacuolar carboxypeptidase Y (CPY)-invertase fusion protein to the cell surface, we identified vacuolar protein targeting (vpt) mutants in 25 new vpt complementation groups. Additional alleles in each of the eight previously identified vpt complementation groups (vpt1 through vpt8) were also obtained. Representative alleles from each of the 33 vpt complementation groups (vpt1 through vpt33) were shown to exhibit defects in the sorting and processing of several native vacuolar proteins, including the soluble hydrolases CPY, proteinase A, and proteinase B. Of the 33 complementation groups, 19 were found to contain mutant alleles that led to extreme defects. In these mutants, CPY accumulated in its Golgi complex-modified precursor form which was secreted by the mutant cells. Normal protein secretion appeared to be unaffected in the vpt mutants. The lack of significant leakage of cytosolic markers from the vpt mutant cells indicated that the vacuolar protein-sorting defects associated with these mutants do not result from cell lysis. In addition, the observation that the precursor rather than the mature forms of CPY, proteinase A, proteinase B were secreted from the vpt mutants was consistent with the fact that mislocalization occurred at a stage after Golgi complex-specific modification, but before final vacuolar sorting of these enzymes. Vacuolar membrane protein sorting appeared to be unaffected in the majority of the vpt mutants. However, a subset of the vpt mutants (vpt11, vpt16, vpt18, and vpt33) was found to exhibit defects in the sorting of a vacuolar membrane marker enzyme, alpha-mannosidase. Up to 50% of the alpha-mannosidase enzyme activity was found to be mislocalized to the cell surface in these vpt mutants. Seven of the vpt complementation groups (vpt3, vpt11, vpt15, vpt16, vpt18, vpt29, and vpt33) contained alleles that led to a conditional lethal phenotype; the mutants were temperature sensitive for vegetative cell growth. This temperature-sensitive phenotype has been shown to be recessive and to cosegregate with the vacuolar protein-sorting defect in each case. Tetrad analysis showed that vpt3 mapped to the right arm of chromosome XV and that vpt15 mapped to the right arm of chromosome II. Intercrosses with other mutants that exhibited defects in vacuolar protein sorting or function (vpl, sec, pep, and end mutants) revealed several overlaps among these different sets of genes. Together, these data indicate that more than 50 gene products are involved, directly or indirectly, in the process of vacuolar protein sorting.  相似文献   

13.
M Babst  T K Sato  L M Banta    S D Emr 《The EMBO journal》1997,16(8):1820-1831
In a late-Golgi compartment of the yeast Saccharomyces cerevisiae, vacuolar proteins such as carboxypeptidase Y (CPY) are actively sorted away from the secretory pathway and transported to the vacuole via a pre-vacuolar, endosome-like intermediate. The vacuolar protein sorting (vps) mutant vps4 accumulates vacuolar, endocytic and late-Golgi markers in an aberrant multilamellar pre-vacuolar compartment. The VPS4 gene has been cloned and found to encode a 48 kDa protein which belongs to the protein family of AAA-type ATPases. The Vps4 protein was purified and shown to exhibit an N-ethylmaleimide-sensitive ATPase activity. A single amino acid change within the AAA motif of Vps4p yielded a protein that lacked ATPase activity and did not complement the protein sorting or morphological defects of the vps4 delta1 mutant. Indeed, when expressed at normal levels in wild-type cells, the mutant vps4 gene acted as a dominant-negative allele. The phenotypic characterization of a temperature-sensitive vps4 allele showed that the immediate consequence of loss of Vps4p function is a defect in vacuolar protein delivery. In this mutant, precursor CPY was not secreted but instead accumulated in an intracellular compartment, presumably the pre-vacuolar endosome. Electron microscopy revealed that upon temperature shift, exaggerated stacks of curved cisternal membranes (aberrant endosome) also accumulated in the vps4ts mutant. Based on these and other observations, we propose that Vps4p function is required for efficient transport out of the pre-vacuolar endosome.  相似文献   

14.
《The Journal of cell biology》1993,121(6):1245-1256
We are studying intercompartmental protein transport to the yeast lysosome-like vacuole with a reconstitution assay using permeabilized spheroplasts that measures, in an ATP and cytosol dependent reaction, vacuolar delivery and proteolytic maturation of the Golgi-modified precursor forms of vacuolar hydrolases like carboxypeptidase Y (CPY). To identify the potential donor compartment in this assay, we used subcellular fractionation procedures that have uncovered a novel membrane-enclosed prevacuolar transport intermediate. Differential centrifugation was used to separate permeabilized spheroplasts into 15K and 150K g membrane pellets. Centrifugation of these pellets to equilibrium on sucrose density gradients separated vacuolar and Golgi complex marker enzymes into light and dense fractions, respectively. When the Golgi-modified precursor form of CPY (p2CPY) was examined (after a 5-min pulse, 30-s chase), as much as 30-40% fractionated with an intermediate density between both the vacuole and the Golgi complex. Pulse-chase labeling and fractionation of membranes indicated that p2CPY in this gradient region had already passed through the Golgi complex, which kinetically ordered it between the Golgi and the vacuole. A mutant CPY protein that lacks a functional vacuolar sorting signal was detected in Golgi fractions but not in the intermediate compartment indicating that this corresponds to a post-sorting compartment. Based on the low transport efficiency of the mutant CPY protein in vitro (decreased by sevenfold), this intermediate organelle most likely represents the donor compartment in our reconstitution assay. This organelle is not likely to be a transport vesicle intermediate because EM analysis indicates enrichment of 250-400 nm compartments and internalization of surface-bound 35S-alpha-factor at 15 degrees C resulted in its apparent cofractionation with wild-type p2CPY, indicating an endosome-like compartment (Singer, B., and H. Reizman. 1990. J. Cell Biol. 110:1911-1922). Fractionation of p2CPY accumulated in the temperature sensitive vps15 mutant revealed that the vps15 transport block did not occur in the endosome-like compartment but rather in the late Golgi complex, presumably the site of CPY sorting. Therefore, as seen in mammalian cells, yeast CPY is sorted away from secretory proteins in the late Golgi and transits to the vacuole via a distinct endosome-like intermediate.  相似文献   

15.
Functions of the carbohydrate side chains of the yeast vacuolar enzyme carboxypeptidase Y (CPY) were investigated by removal, through site-directed mutagenesis, of the sequences which act as signals for N-linked glycosylation. The mutant forms of the enzyme were analysed with respect to activity and intracellular sorting, and the stabilities in vivo and in vitro were studied. It was found that carbohydrate was not important for accurate vacuolar targeting of CPY, but that the rate of transport of the unglycosylated CPY through the secretory pathway to the vacuole was reduced. Tunicamycin, which inhibits the formation of asparagine-linked glycosylation, had a similar effect on the transport of CPY at 23 degrees C. However, the absence of N-linked carbohydrate in general had the more dramatic result of blocking the transport of CPY altogether at an increased temperature (37 degrees C). The unglycosylated mutant CPY was not temperature sensitive for transport in the absence of tunicamycin. Analysis of mutant enzymes containing a single glycosyl residue at each of the four positions showed that the residue at position 87 was particularly important for transport. There was no decrease in the intracellular stability of the completely unglycosylated enzyme, and in vitro the rate of heat inactivation of this species was not increased.  相似文献   

16.
Protein quality control is an essential function of the endoplasmic reticulum. Misfolded proteins unable to acquire their native conformation are retained in the endoplasmic reticulum, retro-translocated back into the cytosol, and degraded via the ubiquitin-proteasome system. We show that efficient degradation of soluble malfolded proteins in yeast requires a fully competent early secretory pathway. Mutations in proteins essential for ER-Golgi protein traffic severely inhibit ER degradation of the model substrate CPY*. We found ER localization of CPY* in WT cells, but no other specific organelle for ER degradation could be identified by electron microscopy studies. Because CPY* is degraded in COPI coat mutants, only a minor fraction of CPY* or of a proteinaceous factor required for degradation seems to enter the recycling pathway between ER and Golgi. Therefore, we propose that the disorganized structure of the ER and/or the mislocalization of Kar2p, observed in early secretory mutants, is responsible for the reduction in CPY* degradation. Further, we observed that mutations in proteins directly involved in degradation of malfolded proteins (Der1p, Der3/Hrd1p, and Hrd3p) lead to morphological changes of the endoplasmic reticulum and the Golgi, escape of CPY* into the secretory pathway and a slower maturation rate of wild-type CPY.  相似文献   

17.
The transport of newly synthesized proteins through the vacuolar protein sorting pathway in the budding yeast Saccharomyces cerevisiae requires two distinct target SNAP receptor (t-SNARE) proteins, Pep12p and Vam3p. Pep12p is localized to the pre-vacuolar endosome and its activity is required for transport of proteins from the Golgi to the vacuole through a well defined route, the carboxypeptidase Y (CPY) pathway. Vam3p is localized to the vacuole where it mediates delivery of cargoes from both the CPY and the recently described alkaline phosphatase (ALP) pathways. Surprisingly, despite their organelle-specific functions in sorting of vacuolar proteins, overexpression of VAM3 can suppress the protein sorting defects of pep12Δ cells. Based on this observation, we developed a genetic screen to identify domains in Vam3p (e.g., localization and/or specific protein–protein interaction domains) that allow it to efficiently substitute for Pep12p. Using this screen, we identified mutations in a 7–amino acid sequence in Vam3p that lead to missorting of Vam3p from the ALP pathway into the CPY pathway where it can substitute for Pep12p at the pre-vacuolar endosome. This region contains an acidic di-leucine sequence that is closely related to sorting signals required for AP-3 adaptor–dependent transport in both yeast and mammalian systems. Furthermore, disruption of AP-3 function also results in the ability of wild-type Vam3p to compensate for pep12 mutants, suggesting that AP-3 mediates the sorting of Vam3p via the di-leucine signal. Together, these data provide the first identification of an adaptor protein–specific sorting signal in a t-SNARE protein, and suggest that AP-3–dependent sorting of Vam3p acts to restrict its interaction with compartment-specific accessory proteins, thereby regulating its function. Regulated transport of cargoes such as Vam3p through the AP-3–dependent pathway may play an important role in maintaining the unique composition, function, and morphology of the vacuole.  相似文献   

18.
A yeast vacuolar protease, carboxypeptidase Y (CPY), is known to be involved in the C-terminal processing of peptides and proteins; however, its real function remains unclear. The CPY biosynthetic pathway has been used as a model system for protein sorting in eukaryotes. CPY is synthesized as a prepro-form that travels through the ER and Golgi to its final destination in vacuoles. In the course of studies on the transport mechanism of CPY, various post-translational events have been identified, e.g. carbohydrate modification and cleavage of the pre-segments. In addition, sorting signals and various sorting vehicles, similar to those found in higher eukaryotic cells, have been found. The catalytic triad in the active site of CPY makes this enzyme a serine protease. A unique feature distinguishing CPY from other serine proteases is its wide pH optimum, in particular its high activity at acidic pH. Several structural properties which might contribute to this unique feature exist such as a conserved free cysteine residue in the S1 substrate binding pocket, a recognition site for a C-terminal carboxyl group, and a disulfide zipper motif. The structural bases in CPY functions are discussed in this article.  相似文献   

19.
Newly synthesized vacuolar hydrolases such as carboxypeptidase Y (CPY) are sorted from the secretory pathway in the late-Golgi compartment and reach the vacuole after a distinct set of membrane-trafficking steps. Endocytosed proteins are also delivered to the vacuole. It has been proposed that these pathways converge at a "prevacuolar" step before delivery to the vacuole. One group of genes has been described that appears to control both of these pathways. Cells carrying mutations in any one of the class E VPS (vacuolar protein sorting) genes accumulate vacuolar, Golgi, and endocytosed proteins in a novel compartment adjacent to the vacuole termed the "class E" compartment, which may represent an exaggerated version of the physiological prevacuolar compartment. We have characterized one of the class E VPS genes, VPS27, in detail to address this question. Using a temperature-sensitive allele of VPS27, we find that upon rapid inactivation of Vps27p function, the Golgi protein Vps10p (the CPY-sorting receptor) and endocytosed Ste3p rapidly accumulate in a class E compartment. Upon restoration of Vps27p function, the Vps10p that had accumulated in the class E compartment could return to the Golgi apparatus and restore correct sorting of CPY. Likewise, Ste3p that had accumulated in the class E compartment en route to the vacuole could progress to the vacuole upon restoration of Vps27p function indicating that the class E compartment can act as a functional intermediate. Because both recycling Golgi proteins and endocytosed proteins rapidly accumulate in a class E compartment upon inactivation of Vps27p, we propose that Vps27p controls membrane traffic through the prevacuolar/endosomal compartment in wild-type cells.  相似文献   

20.
Transport of yeast vacuolar trehalase to the vacuole   总被引:4,自引:0,他引:4  
We have tested yeast secretory mutants, which define different stages of the secretory pathway, for their levels of vacuolar trehalase activity. Mutations that cause accumulation of secretory proteins in the endoplasmic reticulum or in the Golgi body lead to diminished vacuolar trehalase activity. Mutations that cause accumulation of secretory vesicles have no effect on vacuolar trehalase activity. None of the mutations affects cytoplasmic trehalase activity. These results provide further evidence for the existence of a compartmentalized trehalase in yeast, and demonstrate that the enzyme enters the secretory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号