共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated that the alpha isoform of Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KKalpha) is strictly regulated by an autoinhibitory mechanism and activated by the binding of Ca(2+)/CaM [Tokumitsu, H., Muramatsu, M., Ikura, M., and Kobayashi, R. (2000) J. Biol. Chem. 275, 20090-20095]. In this study, we find that rat brain extract contains Ca(2+)/CaM-independent CaM-KK activity. This result is consistent with an enhanced Ca(2+)/CaM-independent activity (60-70% of total activity) observed with the recombinant CaM-KKbeta isoform. By using various truncation mutants of CaM-KKbeta, we have identified a region of 23 amino acids (residues 129-151) located at the N-terminus of the catalytic domain as an important regulatory element of the autonomous activity. A CaM-KKbeta deletion mutant of this domain shows a significant increase of Ca(2+)/CaM dependency for the CaM-KK activity as well as for the autophosphorylation activity. The activities of CaM-KKalpha and CaM-KKbeta chimera, in which autoinhibitory sequences were replaced by each other, were completely dependent on Ca(2+)/CaM, suggesting that the autoinhibitory regions of CaM-KKalpha and CaM-KKbeta are functional. These results establish for the first time that residues 129-151 of CaM-KKbeta participate in the release of the autoinhibitory domain from its catalytic core, resulting in generation of autonomous activity. 相似文献
2.
Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKPase) is a protein phosphatase which dephosphorylates autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) and deactivates the enzyme (Ishida, A., Kameshita, I. and Fujisawa, H. (1998) J. Biol. Chem. 273, 1904-1910). In this study, a phosphorylation-dephosphorylation relationship between CaMKII and CaMKPase was examined. CaMKPase was not significantly phosphorylated by CaMKII under the standard phosphorylation conditions but was phosphorylated in the presence of poly-L-lysine, which is a potent activator of CaMKPase. The maximal extent of the phosphorylation was about 1 mol of phosphate per mol of the enzyme and the phosphorylation resulted in an about 2-fold increase in the enzyme activity. Thus, the activity of CaMKPase appears to be regulated through phosphorylation by its target enzyme, CaMKII. 相似文献
3.
Tokumitsu H Muramatsu Ma Ikura M Kobayashi R 《The Journal of biological chemistry》2000,275(26):20090-20095
Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KK) is a novel member of the CaM kinase family, which specifically phosphorylates and activates CaM kinase I and IV. In this study, we characterized the CaM-binding peptide of alphaCaM-KK (residues 438-463), which suppressed the activity of constitutively active CaM-KK (84-434) in the absence of Ca(2+)/CaM but competitively with ATP. Truncation and site-directed mutagenesis of the CaM-binding region in CaM-KK reveal that Ile(441) is essential for autoinhibition of CaM-KK. Furthermore, CaM-KK chimera mutants containing the CaM-binding sequence of either myosin light chain kinases or CaM kinase II located C-terminal of Leu(440), exhibited enhanced Ca(2+)/CaM-independent activity (60% of total activity). Although the CaM-binding domains of myosin light chain kinases and CaM kinase II bind to the N- and C-terminal domains of CaM in the opposite orientation to CaM-KK (Osawa, M., Tokumitsu, H., Swindells, M. B., Kurihara, H., Orita, M., Shibanuma, T., Furuya, T., and Ikura, M. (1999) Nat. Struct. Biol. 6, 819-824), the chimeric CaM-KKs containing Ile(441) remained Ca(2+)/CaM-dependent. This result demonstrates that the orientation of the CaM binding is not critical for relief of CaM-KK autoinhibition. However, the requirement of Ile(441) for autoinhibition, which is located at the -3 position from the N-terminal anchoring residue (Trp(444)) to CaM, accounts for the opposite orientation of CaM binding of CaM-KK compared with other CaM kinases. 相似文献
4.
钙离子/钙调素依赖性蛋白激酶Ⅱ及其功能 总被引:1,自引:0,他引:1
所有引起细胞内钙离子浓度升高的激素或神经递质都可通过不同的钙离子/钙调素依赖性蛋白激酶达到调节细胞生理功能的作用。在神经元活动、细胞分泌、平滑肌缩等 细胞活动中起重要作用。 相似文献
5.
6.
Regulation of Ca2+/calmodulin-dependent protein kinase II by Ca2+/calmodulin-independent autophosphorylation 总被引:8,自引:0,他引:8
R Lickteig S Shenolikar L Denner P T Kelly 《The Journal of biological chemistry》1988,263(35):19232-19239
The autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaM-KII) results in the generation of kinase activity that is largely Ca2+/CaM-independent. We report that continued Ca2+/CaM-independent autophosphorylation of CaM-KII results in the generation of distinct phosphopeptides as identified by high performance liquid chromatography and enzymatic properties that are different than those observed for Ca2+/CaM-dependent autophosphorylation. These Ca2+/CaM-independent properties include (a) increased catalytic activity, (b) higher substrate affinity for the phosphorylation of synapsin I, and (c) decreased CaM-binding to both CaM-KII subunits as analyzed by gel overlays. Our results indicate that the autophosphorylation of only one subunit per holoenzyme is required to generate the Ca2+/CaM-independent CaM-KII. We suggest a two-step process by which autophosphorylation regulates CaM-KII. Step I requires Ca2+/CaM and underlies initial kinase activation. Step II involves continued autophosphorylation of the Ca2+/CaM-independent kinase and results in increased affinity for its substrate synapsin I and decreased affinity for calmodulin. These results indicate a complex mechanism through which autophosphorylation of CaM-KII may regulate its activity in response to transient fluctuations in intracellular calcium. 相似文献
7.
Multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) is a prominent mediator of neurotransmitters which elevate Ca2+. It coordinates cellular responses to external stimuli by phosphorylating proteins involved in neurotransmitter synthesis, neurotransmitter release, carbohydrate metabolism, ion flux and neuronal plasticity. Structure/function studies of CaM kinase have provided insights into how it decodes Ca2+ signals. The kinase is kept relatively inactive in its basal state by the presence of an autoinhibitory domain. Binding of Ca2+/calmodulin eliminates this inhibitory constraint and allows the kinase to phosphorylate its substrates, as well as itself. This autophosphorylation significantly slows dissociation of calmodulin, thereby trapping calmodulin even when Ca2+ levels are subthreshold. The kinase may respond particularly wel to multiple Ca2+ spikes since trapping may enable a spike frequency-dependent recruitment of calmodulin with each successive Ca2+ spike leading to increased activation of the kinase. Once calmodulin dissociates, CaM kinase remains partially active until it is dephosphorylated, providing for an additional period in which its response to brief Ca2+ transients is potentiated.Special issue dedicated to Dr. Paul Greengard. 相似文献
8.
The 63-kDa subunit, but not the 60-kDa subunit, of brain calmodulin-dependent cyclic nucleotide phosphodiesterase was phosphorylated in vitro by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II. When calmodulin was bound to the phosphodiesterase, 1.33 +/- 0.20 mol of phosphate was incorporated per mol of the 63-kDa subunit within 5 min with no significant effect on enzyme activity. Phosphorylation in the presence of low concentrations of calmodulin resulted in a phosphorylation stoichiometry of 2.11 +/- 0.21 and increased about 6-fold the concentration of calmodulin necessary for half-maximal activation of the phosphodiesterase. Peptide mapping analyses of complete tryptic digests of the 63-kDa subunit revealed two major (P1, P4) and two minor (P2, P3) 32P-peptides. Calmodulin-binding to the phosphodiesterase almost completely inhibited phosphorylation of P1 and P2 with reduced phosphorylation rates of P3 and P4, suggesting the affinity change of the enzyme for calmodulin may be caused by phosphorylation of P1 and/or P2. When Ca2+/calmodulin-dependent protein kinase II was added without prior autophosphorylation, there was no phosphorylation of the 63-kDa phosphodiesterase subunit or of the kinase itself in the presence of a low concentration of calmodulin, and with excess calmodulin the phosphodiesterase subunit was phosphorylated only at P3 and P4. Thus the 63-kDa subunit of phosphodiesterase has a regulatory phosphorylation site(s) that is phosphorylated by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II and blocked by Ca2+/calmodulin binding to the subunit. 相似文献
9.
Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) plays a critical role in neuronal signal transduction and synaptic plasticity. Here, we showed that this kinase was very susceptible to oxidative modulation. Treatment of mouse brain synaptosomes with H2O2, diamide, and sodium nitroprusside caused aggregation of CaMKII through formation of disulfide and non-disulfide linkages, and partial inhibition of the kinase activity. These CaMKII aggregates were found to associate with the post synaptic density. However, treatment of purified CaMKII with these oxidants did not replicate those effects observed in the synaptosomes. Using two previously identified potential mediators of oxidants in the brain, glutathione disulfide S-monoxide (GS-DSMO) and glutathione disulfide S-dioxide (GS-DSDO), we showed that they oxidized and inhibited CaMKII in a manner partly related to those of the oxidant-treated synaptosomes as well as the ischemia-elicited oxidative stress in the acutely prepared hippocampal slices. Interestingly, the autophosphorylated and activated CaMKII was relatively refractory to GS-DSMO- and GS-DSDO-mediated aggregation. Short term ischemia (10 min) caused a depression of basal synaptic response of the hippocampal slices, and re-oxygenation (after 10 min) reversed the depression. However, oxidation of CaMKII remained at above the pre-ischemic level throughout the treatment. Oxidation of CaMKII also prevented full recovery of CaMKII autophosphorylation after re-oxygenation. Subsequently, the high frequency stimulation-mediated synaptic potentiation in the hippocampal CA1 region was significantly reduced compared with the control without ischemia. Thus, ischemia-evoked oxidation of CaMKII, probably via the action of glutathione disulfide S-oxides or their analogues, may be involved in the suppression of synaptic plasticity. 相似文献
10.
11.
The cDNAs encoding the alpha and beta subunits of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) were ligated into the bacterial expression vector pET and expressed in Escherichia coli. The bacterially expressed alpha and beta subunits exhibited Ca2+/calmodulin-dependent activity and were easily purified to apparent homogeneity from cell extracts. To determine the minimum size required for catalytic activity and the properties of the calmodulin-binding domain, mutated CaM kinase II cDNAs were expressed in E. coli and the enzymatic property of expressed proteins was examined. The replacement of Thr-286 of the alpha subunit with the negatively charged amino acid Asp or that of Arg-283 with the neutral amino acid Gly induced the partially Ca2+ independent activity. The mutant enzymes alpha-I(delta 283-478) and alpha-II(delta 359-478), which truncated the C-terminal region of the alpha subunit, exhibited CaM kinase II activity and the activities of alpha-I(delta 283-478) and alpha-II(delta 359-478) were completely independent of and partially dependent on Ca2+ and calmodulin, respectively. However, the truncated protein alpha(delta 250-478), which was only 33 amino acids shorter than the alpha-I(delta 283-478) protein had no enzymatic activity, indicating that alpha-I(delta 283-478) was close to the minimum size of the active form. The mutant enzyme alpha(delta 291-315), which lacked the calmodulin-binding domain exhibited Ca2+ independent activity. The molecular mass was, however, smaller than that expected from the amino acid sequence. The mutant enzyme alpha(delta 304-315), which lacked the C-terminal half of the calmodulin-binding domain of the alpha subunit, however, exhibited Ca(2+)-independent activity without a reduction in molecular size, indicating that residues 304-315 of the alpha subunit constituted the core calmodulin-binding domain. 相似文献
12.
13.
C M Schworer R J Colbran J R Keefer T R Soderling 《The Journal of biological chemistry》1988,263(27):13486-13489
Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) autophosphorylated under limiting conditions (7 microM [gamma-32P]ATP, 500 microM magnesium acetate, 4 degrees C) was analyzed by CNBr cleavage and peptide mapping to determine the site of autophosphorylation that brings about transition of the kinase to the Ca2+-independent form. Reverse phase high performance liquid chromatography (HPLC) (C3) revealed one major CN-Br 32P-peptide (CB1) that eluted at about 6% propanol. This peptide contained [32P]threonine, but almost no [32P]serine, and migrated as a single band (Mr = 3000-3500) in polyacrylamide gels run in the presence of urea and sodium dodecyl sulfate. The properties of CB1 were compared to the properties of a 26-residue synthetic peptide containing the CaM-binding and inhibitory domains as well as a consensus phosphorylation sequence (-Arg-Gln-Glu-Thr-) of rat brain CaM-kinase II (residues 282-307 and 283-308 of the alpha and beta subunits, respectively). CB1 and the synthetic peptide comigrated in urea/sodium dodecyl sulfate gels, co-eluted from reverse phase HPLC (C3 and C18) and from Sephadex G-50, and exhibited Ca2+-dependent calmodulin-binding properties. When the two peptides were subjected to automated Edman sequence analysis, both exhibited a burst of 32P release at cycle 5, which is consistent with the expected amino-terminal sequence of the two peptides, i.e. His-Arg-Gln-Glu-Thr(PO4)-. These findings indicate that autophosphorylation of Thr286 (alpha subunit) and Thr287 (beta subunit) is responsible for transition of CaM-kinase II to the Ca2+-independent form. 相似文献
14.
Ca2+/calmodulin-dependent protein kinase II is required for microcystin-induced apoptosis. 总被引:3,自引:0,他引:3
Kari E Fladmark Odd T Brustugun Gunnar Mellgren Camilla Krakstad Roald Boe Olav K Vintermyr Howard Schulman Stein O Doskeland 《The Journal of biological chemistry》2002,277(4):2804-2811
The potent natural toxins microcystin, nodularin, and okadaic acid act rapidly to induce apoptotic cell death. Here we show that the apoptosis correlates with protein phosphorylation events and can be blocked by protein kinase inhibitors directed against the multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). The inhibitors used comprised a battery of cell-permeable protein kinase antagonists and CaMKII-directed peptide inhibitors introduced by microinjection or enforced expression. Furthermore, apoptosis could be induced by enforced expression of active forms of CaMKII but not with inactive CaMKII. It is concluded that the apoptogenic toxins, presumably through their known ability to inhibit serine/threonine protein phosphatases, can cause CaMKII-dependent phosphorylation events leading to cell death. 相似文献
15.
Purified rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is stimulated by brain gangliosides to a level of about 30% the activity obtained in the presence of Ca2+/calmodulin (CaM). Of the various gangliosides tested, GT1b was the most potent, giving half-maximal activation at 25 microM. Gangliosides GD1a and GM1 also gave activation, but asialo-GM1 was without effect. Activation was rapid and did not require calcium. The same gangliosides also stimulated the autophosphorylation of CaM-kinase II on serine residues, but did not produce the Ca2+-independent form of the kinase. Ganglioside stimulation of CaM-kinase II was also present in rat brain synaptic membrane fractions. Higher concentrations (125-250 microM) of GT1b, GD1a, and GM1 also inhibited CaM-kinase II activity. This inhibition appears to be substrate-directed, as the extent of inhibition is very dependent on the substrate used. The molecular mechanism of the stimulatory effect of gangliosides was further investigated using a synthetic peptide (CaMK 281-309), which contains the CaM-binding, inhibitory, and autophosphorylation domains of CaM-kinase II. Using purified brain CaM-kinase II in which these regulatory domains were removed by limited proteolysis. CaMK 281-309 strongly inhibited kinase activity (IC50 = 0.2 microM). GT1b completely reversed this inhibition, but did not stimulate phosphorylation of the peptide on threonine-286. These results demonstrate that GT1b can partially mimic the effects of Ca2+/CaM on native CaM-kinase II and on peptide CaMK 281-309. 相似文献
16.
The site in calcineurin, the Ca2+/calmodulin (CaM)-dependent protein phosphatase, which is phosphorylated by Ca2+/CaM-dependent protein kinase II (CaM-kinase II) has been identified. Analyses of 32P release from tryptic and cyanogen bromide peptides derived from [32P]calcineurin plus direct sequence determination established the site as -Arg-Val-Phe-Ser(PO4)-Val-Leu-Arg-, which conformed to the consensus phosphorylation sequence for CaM-kinase II (Arg-X-X-Ser/Thr-). This phosphorylation site is located at the C-terminal boundary of the putative CaM-binding domain in calcinerin (Kincaid, R. L., Nightingale, M. S., and Martin, B. M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8983-8987), thereby accounting for the observed inhibition of this phosphorylation when Ca2+/CaM is bound to calcineurin. Since the phosphorylation site sequence also contains elements of the specificity determinants for Ca2+/phospholipid-dependent protein kinase (protein kinase C) (basic residues both N-terminal and C-terminal to Ser/Thr), we tested calcineurin as a substrate for protein kinase C. Protein kinase C catalyzed rapid stoichiometric phosphorylation, and the characteristics of the reaction were the same as with CaM-kinase II: 1) the phosphorylation was blocked by binding of Ca2+/CaM to calcineurin; 2) phosphorylation partially inactivated calcineurin by increasing the Km (from 9.9 +/- 1.1 to 17.5 +/- 1.1 microM 32P-labeled myosin light chain); and 3) [32P]calcineurin exhibited very slow autodephosphorylation but was rapidly dephosphorylated by protein phosphatase IIA. Tryptic and thermolytic 32P-peptide mapping and sequential phosphoamino acid sequence analysis confirmed that protein kinase C and CaM-kinase II phosphorylated the same site. 相似文献
17.
18.
19.
Sugiyama Y Ishida A Sueyoshi N Kameshita I 《Biochemical and biophysical research communications》2008,377(2):648-652
A 30-kDa fragment of Ca2+/calmodulin-dependent protein kinase II (30K-CaMKII) is a constitutively active protein Ser/Thr kinase devoid of autophosphorylation activity. We have produced a chimeric enzyme of 30K-CaMKII (designated CX40-30K-CaMKII), in which the N-terminal 40 amino acids of Xenopus Ca2+/calmodulin-dependent protein kinase I (CX40) were fused to the N-terminal end of 30K-CaMKII. Although CX40-30K-CaMKII exhibited essentially the same substrate specificity as 30K-CaMKII, it underwent significant autophosphorylation. Surprisingly, its autophosphorylation site was found to be Tyr-18 within the N-terminal CX40 region of the fusion protein, although it did not show any Tyr kinase activity toward exogenous substrates. Several lines of evidence suggested that the autophosphorylation occurred via an intramolecular mechanism. These data suggest that even typical Ser/Thr kinases such as 30K-CaMKII can phosphorylate Tyr residues under certain conditions. The possible mechanism of the Tyr residue autophosphorylation is discussed. 相似文献
20.
Alpha and beta isoforms of Ca2+/calmodulin-dependent protein kinase II (alpha and beta CaM kinase II, respectively) are highly conserved except for beta-specific insertions 1 and 2, located at amino acids 316-340 and 354-392, respectively. To investigate the role of these beta-specific insertions, we prepared the deletion mutants betaDelta1, betaDelta2 and betaDelta1/2, which lacked insertions 1, 2 and both, respectively. These mutant DNAs were expressed in neuroblastoma cells and compared with the wild-type enzyme. Green fluorescent protein tagged CaM kinase II was used to further explore the distribution of the kinase in living cells. Most (80%) of wild-type beta and mutant betaDelta1 were located in the particulate fraction, and distributed in the cell body and neurites, forming punctate or spot-like structures in the neurites. Mutants betaDelta2 and betaDelta1/2 were distributed in almost equal amounts in the soluble and particulate fractions. They were concentrated in the base of neurites and only partlially distributed throughout neurites, indicating that their transport to neurites was impaired. Beta(1-410), a deletion mutant of the association domain with a monomeric form, was located primarily in the soluble fraction. These results indicate that insertion 2, the association domain, and the oligomeric form of beta CaM kinase II play an important role in the cellular distribution of beta CaM kinase II. 相似文献