首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.

Background

For thyroid tumorigenesis, two main human in vitro models are available: primary cultures of human thyrocytes treated with TSH or EGF/serum as models for autonomous adenomas (AA) or papillary thyroid carcinomas (PTC) respectively, and human thyroid tumor derived cell lines. Previous works of our group have assessed properties of those models, with a special emphasis on mRNA regulations. It is often assumed that miRNA may be one of the primary events inducing these mRNA regulations.

Methods

The purpose of this study was to investigate the representativity of those models to study microRNA regulations and their relation with mRNA expression. To achieve this aim, the miRNA expressions profiles of primary cultures treated with TSH or EGF/serum and of 6 thyroid cancer cell lines were compared to the expression profiles of 35 tumor tissues obtained by microarrays.

Results

Our data on primary cultures have shown that the TSH or EGF/serum treatment did not greatly modify the microRNA expression profiles, which is contrary to what is observed for mRNA expression profiles, although they still evolved differently according to the treatment. The analysis of miRNA and mRNA expressions profiles in the cell lines has shown that they have evolved into a common, dedifferentiated phenotype, closer to ATC than to the tumors they are derived from.

Conclusions

Long-terms TSH or EGF/serum treatments do not mimic AA or PTC respectively in terms of miRNA expression as they do for mRNA, suggesting that the regulations of mRNA expression induced by these physiological agents occur independently of miRNA. The general patterns of miRNA expression in the cell lines suggest that they represent a useful model for undifferentiated thyroid cancer. Mirna probably do not mediate the rapid changes in gene expression in rapid cell biology regulation.  相似文献   

2.
In Con8 rat mammary epithelial tumor cells, indirect immunofluorescence revealed that Sgk (serum- and glucocorticoid-regulated kinase) and Erk/MAPK (extracellular signal-regulated protein kinase/mitogen activated protein kinase) co-localized to the nucleus in serum-treated cells and to the cytoplasmic compartment in cells treated with the synthetic glucocorticoid dexamethasone. Moreover, the subcellular distribution of the importin-alpha nuclear transport protein was similarly regulated in a signal-dependent manner. In vitro GST-pull down assays revealed the direct interaction of importin-alpha with either Sgk or Erk/MAPK, while RNA interference knockdown of importin-alpha expression disrupted the localization of both Sgk and Erk into the nucleus of serum-treated cells. Wild type or kinase dead forms of Sgk co-immunoprecipitated with Erk/MAPK from either serum- or dexamethasone-treated mammary tumor cells, suggesting the existence of a protein complex containing both kinases. In serum-treated cells, nucleus residing Sgk and Erk/MAPK were both hyperphosphorylated, indicative of their active states, whereas, in dexamethasone-treated cells Erk/MAPK, but not Sgk, was in its inactive hypophosphorylated state. Treatment with a MEK inhibitor, which inactivates Erk/MAPK, caused the relocalization of both Sgk and ERK to the cytoplasm. We therefore propose that the signal-dependent co-localization of Sgk and Erk/MAPK mediated by importin-alpha represents a new pathway of signal integration between steroid and serum/growth factor-regulated pathways.  相似文献   

3.
Two distinct mitogenic modes coexist in thyroid epithelial cells. TSH via cAMP induces proliferation and differentiation expression, whereas growth factors including epidermal growth factor (EGF) induce proliferation and dedifferentiation. Divergent models of TSH/cAMP-dependent mitogenesis have emerged from different thyroid cell culture systems. In the FRTL-5 rat cell line, cAMP cross-signals with transduction pathways of growth factors to induce cyclin D1 and p21(cip1) and down-regulate p27(kip1). By contrast, in canine primary cultures, mitogenic pathways of cAMP and growth factors are fully distinct. cAMP does not induce D-type cyclins and p21, it up-regulates p27, and it stimulates the formation and activity of cyclin D3-cyclin-dependent kinase (CDK) 4 complexes. In primary cultures of normal human thyrocytes, EGF + serum increased cyclin D1 and p21 accumulation, and it stimulated the assembly and activity of cyclin D1-CDK4-p21 complexes. By contrast, TSH repressed or did not induce cyclin D1 and p21, and it rather up-regulated p27. TSH did not increase cyclin D1-CDK4 activity, but it stimulated the activating phosphorylation of CDK4 and the pRb-kinase activity of preexisting cyclin D3-CDK4 complexes. As recently demonstrated in dog thyrocytes and other systems, cyclin D1 and cyclin D3 differently oriented the site specificity of CDK4 pRb-kinase activity, which might differently impact some pRb functions. Cyclin D1 or cyclin D3 are thus differentially used in the distinct mitogenic stimulations by growth factors or TSH, and potentially in hyperproliferative diseases generated by the overactivation of their respective signaling pathways. At variance with dog thyroid primary cultures, rat thyroid cell lines might not be valid models of TSH-dependent mitogenesis of human thyrocytes.  相似文献   

4.
Summary This report describes the development of a culture system for long-term growth and cloning of human fetal adrenocortical cells. Optimal conditions for stimulating clonal growth were determned by testing the efficacy of horse serum (HS), fetal bovine serum (FBS), fibroblast growth factor (FGF), epidermal growth factor (EGF), fibronectin, and a combination of growth factors, UltroSer G, in stimulating growth from low density. Optimal conditions for clonal growth were achieved using fibronectin-coated dishes and DME/F12 medium with 10% FEBS, 10% HS, 2% UltroSer G, and 100 ng/ml FGF or 100 pM EGF. Conditions for growth at clonal density were found to be optimal for growth of early passage, nonclonal cultures at higher densities. The improved growth conditions used for cloning were shown to allow continued long-term growth of nonclonal human adrenocortical cells without fibroblasts overgrowth. All cells in cultures grown in HS, FBS, and UltroSer G had morphologic characteristics of adrenocortical cells, whereas cells grown in FBS only rapidly became overgrown with fibroblasts. Clonal and nonclonal early passage human adrenocortical cells had smilar mitogenic responses to FGF and EGF. Whereas FGF, EGF, and UltroSer G showed similar stimulation of DNA synthesis and clonal growth in human adrenocortical cells and human adrenal gland fibroblasts, the tumor promoter 12-O-teradecanoylphorbol-13-acetate stimulated growth only in adrenocortical cells and was strongly inhibitory to growth in fibroblasts. In both cell types, forskolin inhibited DNA synthesis. Human adrenocortical cell cultures were functional and synthesized cortisol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate. The improved growth conditions for clonal growth of human adrenocortial cells also provided optimal conditions for long-term growth of cultured rat adrenocortical cells and ncreased the cloning efficiency of cultured bovine adrenocortical cells. This work was supported by Research grants AG-00936 and AG-06108 from the National Institute on Aging, Bethesda, MD.  相似文献   

5.
6.
When cultures of WI-38 human diploid fibroblasts reach high cell densities, they cease to proliferate and enter a viable state of quiescence. WI-38 cells can remain in this quiescent state for long periods of time; however, the longer the cells remain growth arrested, the more time they require to leave G0, progress through G1, and enter S after stimulation with fresh serum. The experiments presented here compare the response of long-term quiescent WI-38 cells (stimulated 26 days after plating) and short-term quiescent WI-38 cells (stimulated 12 days after plating) to treatment with a variety of individual purified growth factors instead of whole serum. Our results show that the qualitative and quantitative growth factor requirements necessary to stimulate G1 progression and entry into S were the same for both short- and long-term quiescent WI-38 cells, in that the same defined medium (supplemented with epidermal growth factor [EGF], recombinant human insulin-like growth factor 1 [IGF-1], and dexamethasone [DEX]) stimulated both populations of cells to proliferate with the same kinetics and to the same extent as serum. However, the long-term quiescent WI-38 cells were found to exhibit a difference in the time during which either serum or these individual growth factors were required to be present during the prereplicative period. We believe that this difference may be the cause of the prolongation of the prereplicative phase after stimulation of long-term density-arrested WI-38 cells.  相似文献   

7.
The effect of epidermal growth factor (EGF) on the in vitro growth of human malignant tumors was compared in serum-supplemented (n = 54) and serum-free (N = 41) media at clonal density to determine the true EGF dependency of tumors. In the complete absence of serum at a 1,000 cells/cm2 seeding inoculation (approximately 100-200 adherent cells), EGF increased growth by greater than 50% in 27 of 41 specimens (66%), and growth increased by 100% or more in 18 of these EGF-sensitive tumors. In 12 serum-free cultures (29%), in vitro growth failed to occur without EGF. With 10% serum supplementation and a lower cell density (250 cells/cm2), EGF increased growth by greater than 50% in 34 of 54 specimens (63%), of which 25 had more than a 100% increase. The maximum growth induced by EGF in serum was usually seen in those tumors already capable of moderate in vitro growth. No difference in response to EGF was detected between specimens from primary tumors (n = 24) and those from metastases (n = 30). Under the stringent culture conditions of complete absence of serum and with tumors seeded at a low cell number, EGF stimulated most primary or metastatic human tumors to establish and sustain short-term in vitro growth successfully.  相似文献   

8.
9.
10.
11.
WI-38 cells, density arrested for short periods of time, can be stimulated to re-enter the cell cycle by epidermal growth factor (EGF) alone. However, cells density arrested for longer periods have a prolonged prereplicative phase when serum stimulated and cannot be stimulated by EGF alone. Radio-ligand binding studies performed on WI-38 cells showed that actively growing cells bind [125I]EGF at relatively low levels that increase to a maximum as the cells become contact inhibited. As the cells enter a state of deeper quiescence, EGF binding falls to one-third to one-fifth the short-term growth arrested levels, remaining constant thereafter. The EGF-receptor complexes internalize more slowly in long-term growth arrested cells, and the rate of ligand association to the receptor is lower than short-term growth arrested cells. The amount of EGF receptor protein in lysates of equal numbers of both short- and long-term quiescent cells remains the same. These results suggest that the failure of long-term growth arrested cells to respond to EGF is not due to dramatic changes in the amount of receptor protein during prolonged quiescence but more likely to an alteration in the ability of these receptors to bind ligand and/or activate the EGF signal transduction pathway. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Normal thyrocytes grown as reconstituted follicles in collagen gel were evaluated for drug effects of small molecule kinase inhibitors on growth factor-induced cell migration in a 3D context. MEK inhibition by U0126 only partially antagonized EGF/serum-induced cell migration from the basal follicular surface into the matrix. Combined treatment with U0126 and LY294002, a PI3K blocker, was necessary to abolish migration. However, exposure to only LY294002 facilitated the response to EGF by breakdown of the original follicular structure. In the same time EGF promoted thyroid cell survival that was compromised by LY294002 in absence of EGF. Cells treated with EGF and LY294002 retained the ability to form follicles. The findings indicate that dual inhibition of MAPK and PI3K/AKT pathways is required to fully block matrix invasion of EGF-stimulated thyroid cells. Conversely, single drug treatment with PI3K inhibitor adversely promotes invasiveness probably by destabilizing the follicular epithelium.  相似文献   

13.
This study investigated conditions for optimal in vitro propagation of human skin-derived mesenchymal stem cells (S-MSC). Forty primary skin-derived precursor cell (SKP) cultures were established from both male and female donors (age 29–65 years) and eight of them were randomly selected for in-depth characterization. Effects of basic fibroblast growth factor (FGF-2), epidermal growth factor (EGF), leukemia inhibiting factor (LIF) and dibutyryl-cyclic adenosine monophosphate (db-cAMP) on S-MSC proliferation were investigated. Primary SKP cultures were >95% homogenous for CD90, CD73, and CD105 marker expression enabling to classify these cells as S-MSC. FGF-2 dose-dependent stimulation was observed in low serum medium only, whereas EGF neither stimulated S-MSC proliferation nor potentates the effect of FGF-2. Pronounced donor to donor differences among S-MSC cultures were observed in 3-day proliferation assay. This study demonstrates that homogenous S-MSC populations can be reproducibly isolated from individual donors of different age. Optimal cell culture conditions for in vitro propagation of S-MSC are B27 supplemented or low serum media with FGF-2 (4 ng/ml). EGF and LIF as well as db-cAMP are dispensable for S-MSC proliferation.  相似文献   

14.
15.
Herstatin is an autoinhibitor of the ErbB family consisting of subdomains I and II of the human epidermal growth factor receptor 2 (ErbB-2) extracellular domain and a novel C-terminal domain encoded by an intron. Herstatin binds to human epidermal growth factor receptor 2 and to the epidermal growth factor receptor (EGFR), blocking receptor oligomerization and tyrosine phosphorylation. In this study, we characterized several early steps in EGFR activation and investigated downstream signaling events induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha) in NIH3T3 cell lines expressing EGFR with and without herstatin. Herstatin expression decreased EGF-induced EGFR tyrosine phosphorylation and delayed receptor down-regulation despite receptor occupancy by ligand with normal binding affinity. Akt stimulation by EGF and TGF-alpha, but not by fibroblast growth factor 2, was almost completely blocked in the presence of herstatin. Surprisingly, EGF and TGF-alpha induced full activation of MAPK in duration and intensity and stimulated association of the EGFR with Shc and Grb2. Although MAPK was fully stimulated, herstatin expression prevented TGF-alpha-induced DNA synthesis and EGF-induced proliferation. The herstatin-mediated uncoupling of MAPK from Akt activation was also observed in Chinese hamster ovary cells co-transfected with EGFR and herstatin. These findings show that herstatin expression alters EGF and TGF-alpha signaling profiles, culminating in inhibition of proliferation.  相似文献   

16.
Both oxidative stress and epidermal growth factor (EGF) contribute to the initiation and progression of renal proximal tubular dysfunction under pathophysiologic conditions. Thus, this study was performed (1) to examine both the individual, and the combined effects of H2O2 and EGF on alpha-methyl-D-glucopyranoside uptake (alpha-MG uptake) in the primary cultured renal proximal tubule cells (PTCs), and (2) to elucidate the involvement of p44/42 mitogen activated protein kinase (MAPK) and phospholipase A2 in mediating these actions. Both H2O2 and EGF inhibited alpha-MG uptake individually, while the combination of H2O2 and EGF further potentiated the inhibitory effect on alpha-MG uptake, which was elicited by each agent. H2O2 not only caused a rapid increase in the phosphorylation of p44/42 MAPK, but also promoted the translocation of cytosolic phospholipase A2 (cPLA2) from the cytosolic to particulate fraction, and stimulated cellular [3H]-arachidonic acid (AA) release. EGF similarly activates phosphorylation of p44/42 MAPK and stimulates [3H]-AA release. When PTCs were exposed to 100 microM H2O2 and 50 ng/ml EGF simultaneously, a further increase in the phosphorylation of p44/42 MAPK, of [3H]-AA release, and of prostaglandin E2 (PGE2) production was elicited as compared with the effects of each individual agonist alone. Moreover, the additive phosphorylation of p44/42 MAPK, [3H]-AA release, and PGE2 production by H2O2 and EGF was almost completely inhibited by the p44/42 MAPK inhibitor, PD 98059. In conclusion, these results are consistent with the hypothesis that under conditions of oxidative stress, the H2O2-induced inhibition of alpha-MG uptake in the renal proximal tubule is mediated through a modulation of the EGF signaling pathway, promoting further phosphorylation of p44/42 MAPK, activation of PLA2.  相似文献   

17.
Mouse capillary endothelial cells (1G11 cell line) embedded in type I collagen gels undergo in vitro angiogenesis. Cells rapidly reorganize and form capillary-like structures when stimulated with serum. Transforming growth factor beta1 (TGF-beta1) alone can substitute for serum and induce cell survival and tubular network formation. This TGF-beta1-mediated angiogenic activity depends on phosphatidylinositol 3-kinase (PI3K) and p42/p44 mitogen-activated protein kinase (MAPK) signaling. We showed that specific inhibitors of either pathway (wortmannin, LY-294002, and PD-98059) all suppressed TGF-beta1-induced angiogenesis mainly by compromising cell survival. We established that TGF-beta1 stimulated the expression of TGF-alpha mRNA and protein, the tyrosine phosphorylation of a 170-kDa membrane protein representing the epidermal growth factor (EGF) receptor, and the delayed activation of PI3K/Akt and p42/p44 MAPK. Moreover, we showed that all these TGF-beta1-mediated signaling events, including tubular network formation, were suppressed by incubating TGF-beta1-stimulated endothelial cells with a soluble form of an EGF receptor (ErbB-1) or tyrphostin AG1478, a specific blocker of EGF receptor tyrosine kinase. Finally, addition of TGF-alpha alone poorly stimulated angiogenesis; however, by reducing cell death, it strongly potentiated the action of TGF-beta1. We therefore propose that TGF-beta1 promotes angiogenesis at least in part via the autocrine secretion of TGF-alpha, a cell survival growth factor, activating PI3K/Akt and p42/p44 MAPK.  相似文献   

18.
19.
In vitro models have been extensively used to map gene expression in ECs but few studies have used cells from in vivo sources directly. Here, we compare different gene expression surveys on both cultured and fresh tissue derived ECs, and it emerges that gene expression profiles can be paralleled with the angiogenic stage of the cells. ECs stimulated with different growth factors in monolayer cultures exhibit gene expression profiles indicative of an active proliferative state, whereas gene expression in tube forming cells in vitro involves genes implicated in cell adhesion processes. Genes overexpressed in tumor ECs are biased towards extracellular matrix remodeling, a late event in angiogenesis. The elucidation of gene expression profiles under these different conditions will contribute to a better understanding of the molecular mechanisms during angiogenesis in both pathological and physiological circumstances and will have implications for the development of angiogenesis interfering treatment strategies.  相似文献   

20.
Aigner T  McKenna L  Zien A  Fan Z  Gebhard PM  Zimmer R 《Cytokine》2005,31(3):227-240
In order to understand the cellular disease mechanisms of osteoarthritic cartilage degeneration it is of primary importance to understand both the anabolic and the catabolic processes going on in parallel in the diseased tissue. In this study, we have applied cDNA-array technology (Clontech) to study gene expression patterns of primary human normal adult articular chondrocytes isolated from one donor cultured under anabolic (serum) and catabolic (IL-1beta) conditions. Significant differences between the different in vitro cultures tested were detected. Overall, serum and IL-1beta significantly altered gene expression levels of 102 and 79 genes, respectively. IL-1beta stimulated the matrix metalloproteinases-1, -3, and -13 as well as members of its intracellular signaling cascade, whereas serum increased the expression of many cartilage matrix genes. Comparative gene expression analysis with previously published in vivo data (normal and osteoarthritic cartilage) showed significant differences of all in vitro stimulations compared to the changes detected in osteoarthritic cartilage in vivo. This investigation allowed us to characterize gene expression profiles of two classical anabolic and catabolic stimuli of human adult articular chondrocytes in vitro. No in vitro model appeared to be adequate to study overall gene expression alterations in osteoarthritic cartilage. Serum stimulated in vitro cultures largely reflected the results that were only consistent with the anabolic activation seen in osteoarthritic chondrocytes. In contrast, IL-1beta did not appear to be a good model for mimicking catabolic gene alterations in degenerating chondrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号