首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
ArsA, the peripheral membrane component of the anion-translocating ATPase ArsAB, consists of two nucleotide binding domains (A1 and A2), which are connected by a linker sequence. Previous studies on ArsA have focused on the function of each nucleotide binding domain and the role of the linker, whereas the present study looks at the interactions between the binding domains and their interactions with the linker. It has previously been shown that the A1 domain of ArsA carries out unisite catalysis in the absence of antimonite, while A2 is recruited in multisite catalysis by antimonite in the presence of a functional A1 domain. Multisite catalysis thus seems to result from an interaction between A1 and A2 brought about by antimonite. In the present study, we provide direct biochemical evidence for interaction between the two nucleotide binding domains and show that the linker region acts as a transducer of the conformational changes between them. We find that nucleotide binding to the A2 domain results in a significant, detectable change in the conformation of the A1 domain. Two ATP analogs, FSBA and ATP gamma S, used in this study, were both found to bind preferentially to the A2 domain, and their binding resulted in changing the otherwise compact A1 domain into an open conformation. Point mutations in the A2 domain and the linker region also produced a similar effect on the conformation of A1, thus suggesting that events at A2 are relayed to A1 via the linker. We propose that nucleotide binding to A2 produces a two-tiered conformational change. The significance of these changes in the mechanism of ArsA is discussed.  相似文献   

2.
The ars operon of plasmid R773 encodes an As(III)/Sb(III) extrusion pump. The catalytic subunit, the ArsA ATPase, has two homologous halves, A1 and A2, each with a consensus nucleotide-binding sequence. ATP hydrolysis is slow in the absence of metalloid and is accelerated by metalloid binding. ArsA M446W has a single tryptophan adjacent to the A2 nucleotide-binding site. Tryptophan fluorescence increased upon addition of ATP, ADP, or a nonhydrolyzable ATP analogue. Mg(2+) and Sb(III) produced rapid quenching of fluorescence with ADP, no quenching with a nonhydrolyzable analogue, and slow quenching with ATP. The results suggest that slow quenching with ATP reflects hydrolysis of ATP to ADP in the A2 nucleotide-binding site. In an A2 nucleotide-binding site mutant, nucleotides had no effect. In contrast, in an A1 nucleotide-binding mutant, nucleotides still increased fluorescence, but there was no quenching with Mg(2+) and Sb(III). This suggests that the A2 site hydrolyzes ATP only when Sb(III) or As(III) is present and when the A1 nucleotide-binding domain is functional. These results support previous hypotheses in which only the A1 nucleotide-binding domain hydrolyzes ATP in the absence of activator (unisite catalysis), and both the A1 and A2 sites hydrolyze ATP when activated (multisite catalysis).  相似文献   

3.
The arsRDABC operon of Escherichia coli plasmid R773 encodes the ArsAB pump that catalyzes extrusion of the metalloids As(III) and Sb(III), conferring metalloid resistance. The catalytic subunit, ArsA, is an ATPase with two homologous halves, A1 and A2, connected by a short linker. Each half contains a nucleotide binding domain. The overall rate of ATP hydrolysis is slow in the absence of metalloid and is accelerated by metalloid binding. The results of photolabeling of ArsA with the ATP analogue 8-azidoadenosine 5'-[alpha-(32)P]-triphosphate at 4 degrees C indicate that metalloid stimulation correlates with a >10-fold increase in affinity for nucleotide. To investigate the relative contributions of the two nucleotide binding domains to catalysis, a thrombin site was introduced in the linker. This allowed discrimination between incorporation of labeled nucleotides into the two halves of ArsA. The results indicate that both the A1 and A2 nucleotide binding domains bind and hydrolyze trinucleotide, even in the absence of metalloid. Sb(III) increases the affinity of the A1 nucleotide binding domain to a greater extent than the A2 nucleotide binding domain. The ATP analogue labeled with (32)P at the gamma position was used to measure hydrolysis of trinucleotide at 37 degrees C. Under these catalytic conditions, both nucleotide binding domains hydrolyze ATP, but hydrolysis in A1 is stimulated to a greater degree by Sb(III) than A2. These results suggest that the two homologous halves of the ArsA may be functionally nonequivalent.  相似文献   

4.
The ArsA protein, the catalytic component of the plasmid-encoded resistance system for removal of the toxic oxyanions arsenite, antimonite, and arsenate from bacterial cells, catalyzes oxyanion-stimulated ATP hydrolysis. Three lines of evidence suggest that the ArsA protein functions as a homodimer. First, the ArsA protein was modified with 5'-p-fluorosulfonyl-benzoyladenosine (FSBA). Antimonite potentiated FSBA inhibition, while ATP or ADP afforded partial protection. ATP and antimonite together provided complete protection, indicating interaction of the anion- and nucleotide-binding sites. The estimated Ki values for FSBA were 0.4 mM in the absence of antimonite and 0.1 mM in the presence of antimonite, suggesting that the binding of antimonite increased the affinity of ArsA protein for FSBA. Incorporation of [14C]FSBA was examined. Extrapolation of the amount of FSBA required to inactivate the protein indicated that 1 mol of FSBA was sufficient to inhibit the activity of 1 mol of ArsA protein in the absence of substrates, while only 0.5 mol was required in the presence of the anionic substrate antimonite. Second, chemical cross-linking of the 63-kDa ArsA protein with N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline resulted in formation of a species approximately twice the size of the monomer in the presence of antimonite but not ATP. Third, determination of the average mass of the ArsA protein in solution by light scattering demonstrated that the average species was 66 kDa in the absence of substrates. In the presence of antimonite the weight average molecular mass increased to a mass in excess of 100 kDa. These results are consistent with the ArsA protein existing in an equilibrium between monomer and dimer, with the equilibrium favoring dimerization upon binding of the anionic substrate. Moreover, total loss of ATPase activity in the half-modified enzyme suggests that the catalytic sites on each monomer must interact.  相似文献   

5.
Pyridoxal phosphate (PLP) and adenosine diphospho (AP2-PL)-, triphospho (AP3-PL)-, and tetraphospho (AP4-PL)-pyridoxals (Tagaya, M., and Fukui, T. (1986) Biochemistry 25, 2958-2964) were tested as potential affinity probes for F1 ATPase of Escherichia coli. Both AP3-PL and AP4-PL bound and inhibited F1 ATPase, whereas PLP and AP2-PL were weak inhibitors. The concentrations of AP3-PL and AP4-PL for half-maximal inactivations of the multisite (steady state) ATPase activity were both 18 microM. The binding of these reagents to a reactive lysyl residue(s) was confirmed from the difference absorption spectra, and the stoichiometry of binding of [3H]AP3-PL to F1 at the saturating level was about 1 mol/mol F1. The analogue bound to both the alpha subunit (about two-thirds of the radioactivity) and the beta subunit (about one-third of the radioactivity). No inactivation of multisite ATPase activity or binding of AP3-PL was observed in the presence of ATP. F1 modified with about one mol of AP3-PL had essentially no uni- and multisite hydrolysis of ATP. The rate of binding of ATP decreased to 10(-2) of that of unmodified F1, and the rate of release of ATP was about two times faster. The equilibrium F1 X ATP in equilibrium F1 X ADP X Pi was shifted toward F1 X ATP, and no promotion of ATP hydrolysis at unisite was observed with excess ATP. These results suggest that the AP3-PL or AP4-PL bound to an active site, and catalysis by the two remaining sites was completely abolished.  相似文献   

6.
The effect of guanidinium hydrochloride (GdnHCl) on multisite and unisite ATPase activity by F0F1 of submitochondrial particles from bovine hearts was studied. In particles without control by the inhibitor protein, 50 mM GdnHCl inhibited multisite hydrolysis by about 85%; full inhibition required around 500 mM. In the range of 500-650 mM, GdnHCl enhanced the rate of unisite catalysis by promoting product release; it also increased the rate of hydrolysis of ATP bound to the catalytic site without GdnHCl. GdnHCl diminished the affinity of the enzyme for aurovertin. The effects of GdnHCl were irreversible. The results suggest that disruption of intersubunit contacts in F0F1 abolishes multisite hydrolysis and stimulates of unisite hydrolysis. Particles under control by the inhibitor protein were insensitive to concentrations of GdnHCl that induce the aforementioned alterations of F0F1 free of inhibitor protein, indicating that the protein stabilizes the global structure of particulate F1.  相似文献   

7.
The ArsA ATPase is the catalytic subunit of the ArsAB oxyanion pump in Escherichia coli that is responsible for extruding arsenite or antimonite from inside the cell, thereby conferring resistance. Either antimonite or arsenite stimulates ArsA ATPase activity. In this study, the role of histidine residues in ArsA activity was investigated. Treatment of ArsA with diethyl pyrocarbonate (DEPC) resulted in complete loss of catalytic activity. The inactivation could be reversed upon subsequent incubation with hydroxylamine, suggesting specific modification of histidine residues. ATP and oxyanions afforded significant protection against DEPC inactivation, indicating that the histidines are located at the active site. ArsA has 13 histidine residues located at position 138, 148, 219, 327, 359, 368, 388, 397, 453, 465, 477, 520, and 558. Each histidine was individually altered to alanine by site-directed mutagenesis. Cells expressing the altered ArsA proteins were resistant to both arsenite and antimonite. The results indicate that no single histidine residue plays a direct role in catalysis, and the inhibition by DEPC may be caused by steric hindrance from the carbethoxy group.  相似文献   

8.
The epsilon subunit of Escherichia coli F1-ATPase is a tightly bound but dissociable partial inhibitor of ATPase activity. The effects of epsilon on the enzyme were investigated by comparing the ATPase activity and aurovertin binding properties of the epsilon-depleted F1-ATPase and the epsilon-replete complex. Kinetic data of multisite ATP hydrolysis were analyzed to give the best fit for one, two, or three kinetic components. Each form of F1-ATPase contained a high-affinity component, with a Km near 20 microM and a velocity of approximately 1 unit/mg. Each also exhibited a component with a Km in the range of 0.2 mM. The velocity of this component was 25 units/mg for epsilon-depleted ATPase but only 4 units/mg for epsilon-replete enzyme. The epsilon-depleted enzyme also contained a very low affinity component not present in the epsilon-replete enzyme. In unisite hydrolysis studies, epsilon had no effect on the equilibrium between substrate ATP and product ADP.P1 at the active site but reduced the rate of product release 15-fold. These results suggest that epsilon subunit slows a conformational change that is required to reduce the affinity at the active site, allowing dissociation of product. It is suggested that inhibition of multisite hydrolysis by epsilon is also due to a reduced rate of product release. epsilon-depleted F1-ATPase showed little of no modulation of aurovertin fluorescence by added ADP and ATP. Aurovertin fluorescence titrations in buffer containing ethylenediaminetetraacetic acid (EDTA) revealed that epsilon-depleted enzyme had high affinity for aurovertin (Kd less than 0.1 microM) regardless of the presence of nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Zhou T  Radaev S  Rosen BP  Gatti DL 《The EMBO journal》2000,19(17):4838-4845
Active extrusion is a common mechanism underlying detoxification of heavy metals, drugs and antibiotics in bacteria, protozoa and mammals. In Escherichia coli, the ArsAB pump provides resistance to arsenite and antimonite. This pump consists of a soluble ATPase (ArsA) and a membrane channel (ArsB). ArsA contains two nucleotide-binding sites (NBSs) and a binding site for arsenic or antimony. Binding of metalloids stimulates ATPase activity. The crystal structure of ArsA reveals that both NBSs and the metal-binding site are located at the interface between two homologous domains. A short stretch of residues connecting the metal-binding site to the NBSs provides a signal transduction pathway that conveys information on metal occupancy to the ATP hydrolysis sites. Based on these structural features, we propose that the metal-binding site is involved directly in the process of vectorial translocation of arsenite or antimonite across the membrane. The relative positions of the NBS and the inferred mechanism of allosteric activation of ArsA provide a useful model for the interaction of the catalytic domains in other transport ATPases.  相似文献   

10.
Characterization of the catalytic subunit of an anion pump   总被引:12,自引:0,他引:12  
The ArsA protein, the 63-kDa catalytic subunit of an oxyanion-translocating ATPase, was purified by successive chromatography using Q-Sepharose, red agarose, and phenyl-Sepharose to a specific activity in excess of 1 mumol of ATP hydrolyzed per min per mg of protein. ATPase activity was dependent on the presence of the oxyanionic substrates. Inhibitors of other classes of ion-translocating ATPases had no effect on ArsA ATPase activity, including N,N'-dicyclohexyl-carbodiimide, azide, vanadate, and nitrate. The apparent Km for ATP was determined to be 0.13 mM. The optimal pH range for ATP hydrolysis was 7.5 to 7.8. ATPase activity required Mg2+ at a molar ratio of 2 ATP:1 Mg2+. Limited proteolysis by trypsin was used to study conformational changes produced upon binding of substrates to the ArsA protein. In the absence of substrates, the ArsA protein was rapidly cleaved by trypsin to a major product of 30 kDa. ATP was partially protected from trypsin digestion, while the anionic substrate antimonite alone had no effect on proteolysis. Combination of the two substrates nearly completely protected the ArsA protein from proteolysis. Proteolytic cleavage correlated with loss of anion-stimulated ATPase activity and substrate protection from cleavage correlated with retention of activity. These results demonstrate that ATP and antimonite together produce a conformational change which is different from that of the ArsA protein in the presence of either substrate alone and suggest interaction between the oxyanion and ATP binding sites.  相似文献   

11.
The ArsAB extrusion pump encoded by the ars operon of Escherichia coli plasmid R773 confers resistance to the toxic trivalent metalloids arsenite [As(III)] and antimonite [Sb(III)]. The ArsA ATPase, the catalytic subunit of the pump, has two homologous halves, A1 and A2. At the interface of these two halves are two nucleotide-binding domains and a metalloid-binding domain. Cys-113 and Cys-422 have been shown to form a high-affinity metalloid binding site. The crystal structure of ArsA shows two other bound metalloid atoms, one liganded to Cys-172 and His-453, and the other liganded to His-148 and Ser-420. The contribution of those putative metalloid sites was examined. There was little effect of mutagenesis of residues His-148 and Ser-420 on metalloid binding. However, a C172A ArsA mutant and C172A/H453A double mutant exhibited significantly decreased affinity for Sb(III). These results suggest first that there is only a single high-affinity metalloid binding site in ArsA, and second that Cys-172 controls the affinity of this site for metalloid and hence the efficiency of metalloactivation of the ArsAB efflux pump.  相似文献   

12.
The effect of guanidinium chloride (GdnHCl) on the ATPase activity and structure of soluble mitochondrial F1 was studied. At high ATP concentrations, hydrolysis is carried by the three catalytic sites of F1; this reaction was strongly inhibited by GdnHCl concentrations of <50 mM. With substoichiometric ATP concentrations, hydrolysis is catalyzed exclusively by the site with the highest affinity. Under these conditions, ATP binding and hydrolysis took place with GdnHCl concentrations of >100 mM; albeit at the latter concentration, the rate of hydrolysis of bound ATP was lower. Similar results were obtained with urea, although nearly 10-fold higher concentrations were required to inhibit multisite hydrolysis. GdnHCl inhibited multisite ATPase activity by diminishing the V(max) of the reaction without significant alterations of the Km for MgATP. GdnHCl prevented the effect of excess ATP on hydrolysis of ATP that was already bound to the high-affinity catalytic site. With and without 100 mM GdnHCl and 100 microM [3H]ATP in the medium, F1 bound 1.6 and 2 adenine nucleotides per F1, respectively. The effect of GdnHCl on some structural features of F1 was also examined. GdnHCl at concentrations that inhibit multisite ATP hydrolysis did not affect the exposure of the cysteines of F1, nor its intrinsic fluorescence. With 100 mM GdnHCl, a concentration at which unisite ATP hydrolysis was still observed, 0.7 cysteine per F1 became solvent-exposed and small changes in its intrinsic fluorescence of F1 were detected. GdnHCl concentrations on the order of 500 mM were required to induce important decreases in intrinsic fluorescence. These changes accompanied inhibition of unisite ATP hydrolysis. The overall data indicate that increasing concentrations of GdnHCl bring about distinct and sequential alterations in the function and structure of F1. With respect to the function of F1, the results show that at low GdnHCl concentrations, only the high-affinity site expresses catalytic activity, and that inhibition of multisite catalysis is due to alterations in the transmission of events between catalytic sites.  相似文献   

13.
The ArsA ATPase is the catalytic subunit of the arsenite-translocating ArsAB pump that is responsible for resistance to arsenicals and antimonials in Escherichia coli. ATPase activity is activated by either arsenite or antimonite. ArsA is composed of two homologous halves A1 and A2, each containing a nucleotide binding domain, and a single metalloid binding or activation domain is located at the interface of the two halves of the protein. The metalloid binding domain is connected to the two nucleotide binding domains through two DTAPTGH sequences, one in A1 and the other in A2. The DTAPTGH sequences are proposed to be involved in information communication between the metal and catalytic sites. The roles of Asp142 in A1 D 142TAPTGH sequence, and Asp447 in A2 D 447TAPTGH sequence was investigated after altering the aspartates individually to alanine, asparagine, and glutamate by site-directed mutagenesis. Asp142 mutants were sensitive to As(III) to varying degrees, whereas the Asp447 mutants showed the same resistance phenotype as the wild type. Each altered protein exhibited varying levels of both basal and metalloid-stimulated activity, indicating that neither Asp142 nor Asp447 is essential for catalysis. Biochemical characterization of the altered proteins imply that Asp142 is involved in Mg (2+) binding and also plays a role in signal transduction between the catalytic and activation domains. In contrast, Asp447 is not nearly as critical for Mg (2+) binding as Asp142 but appears to be in communication between the metal and catalytic sites. Taken together, the results indicate that Asp142 and Asp447, located on the A1 and A2 halves of the protein, have different roles in ArsA catalysis, consistent with our proposal that these two halves are functionally nonequivalent.  相似文献   

14.
(1) Dimethyl sulfoxide (DMSO) markedly inhibited the Vmax of multisite ATPase activity in Escherichia coli F1-ATPase at concentrations greater than 30% (v/v). Vmax/KM was reduced by 2 orders of magnitude in 40% (v/v) DMSO at pH 7.5, primarily due to reduction of Vmax. The inhibition was rapidly reversed on dilution into aqueous buffer. (2) KdATP at the first, high-affinity catalytic site was increased 1500-fold from 2.3 x 10(-10) to 3.4 x 10(-7) M in 40% DMSO at pH 7.5, whereas KdADP was increased 3.2-fold from 8.8 to 28 microM. This suggests that the high-affinity catalytic site presents a hydrophobic environment for ATP binding in native enzyme, that there is a significant difference between the conformation for ADP binding as opposed to ATP binding, and that the ADP-binding conformation is more hydrophilic. (3) Rate constants for hydrolysis and resynthesis of bound ATP in unisite catalysis were slowed approximately 10-fold by 40% DMSO; however, the equilibrium between bound Pi/bound ATP was little changed. The reduction in catalysis rates may well be related to the large increase in KdATP (less constrained site). (4) Significant Pi binding to E. coli F1 could not be detected either in 40% DMSO or in aqueous buffer using a centrifuge column procedure. (5) We infer, on the basis of the measured constants KaATP, K2 (hydrolysis/resynthesis of ATP), k+3 (Pi release), and KdADP and from estimates of k-3 (Pi binding) that delta G for ATP hydrolysis in 40% DMSO-containing pH 7.5 buffer is between -9.2 and -16.8 kJ/mol.  相似文献   

15.
The mechanism of ATP hydrolysis by the solubilized mitochondrial ATPase (MF1) has been studied under conditions where catalytic turnover occurs at one site, uni-site catalysis (obtained when enzyme is in excess of substrate), or at two sites, bi-site catalysis (obtained when substrate is in excess of enzyme). Pulse-chase experiments support the conclusion that the sites which participate in bi-site catalysis are the same as those which participate in uni-site catalysis. Upon addition of ATP in molar excess to MF1, label that was bound under uni-site conditions dissociates at a rate equal to the rate of bi-site catalysis. Similarly, when medium ATP is removed, label that was bound under bi-site conditions dissociates at a rate equal to the rate of uni-site catalysis. Evidence that a high affinity catalytic site equivalent to the one observed under uni-site conditions participates as an intermediate in bi-site catalysis includes the demonstration of full occupancy of a catalytically competent site during steady-state turnover at nanomolar concentrations of ATP. Improved measurements of the interaction of ADP at a high affinity catalytic site have lead to the revision of several of the rate constants that define uni-site catalysis. The rate constant for unpromoted dissociation of ADP is equal to that for Pi (4 X 10(-3) s-1). The rate of binding ADP at a high affinity chaseable site (Kd = 1 nM) is equal to the rate of binding ATP (4 X 10(6) M-1 s-1). The rate of catalysis obtained when substrate binding at one site promotes product release from an adjacent site (bi-site catalysis) is up to 100,000-fold faster than unpromoted product release (uni-site catalysis).  相似文献   

16.
Molecular analysis of an ATP-dependent anion pump   总被引:3,自引:0,他引:3  
The plasmid-borne arsenical resistance operon encodes an ATP-driven oxyanion pump for the extrusion of the oxyanions arsenite, antimonite and arsenate from bacterial cells. The catalytic component of the pump, the 63 kDa ArsA protein, hydrolyses ATP in the presence of its anionic substrate antimonite (SbO2-). The ATP analogue 5'-p-fluorosulphonylbenzoyladenosine was used to modify the ATP binding site(s) of the ArsA protein. From sequence analysis there are two potential nucleotide binding sites. Mutations were introduced into the N-terminal site. Purified mutant proteins were catalytically inactive and incapable of binding nucleotides. Conformational changes produced upon binding of substrates to the ArsA protein were investigated by measuring the effects of substrates on trypsin inactivation. The hydrophobic 45.5 kDa ArsB protein forms the membrane anchor for the ArsA protein. The presence of the ArsA protein on purified inner membrane can be detected immunologically. In the absence of the arsB gene no ArsA is found on the membrane. Synthesis of the ArsB protein is limiting for formation of the pump. Analysis of mRNA structure suggests a potential translational block to synthesis of the ArsB protein. Northern analysis of the ars message demonstrates rapid degradation of the mRNA in the arsB region.  相似文献   

17.
The linker peptide of the ArsA ATPase   总被引:3,自引:0,他引:3  
Plasmid R773 encodes an As(III)/Sb(III)-translocating ATPase that confers resistance to those metalloids in Escherichia coli. The catalytic subunit of the pump, the ArsA ATPase, consists of homologous N- and C-terminal nucleotide-binding domains connected by a 25-residue linker. The role of this linker sequence was examined by deletion of five, 10, 15 or 23 residues or insertion of five glycine residues. Cells expressing arsA with the 5-residue insertion had wild-type arsenite resistance. Resistance of cells expressing modified arsA genes with deletions was dependent on the linker length. Cells with five or 10 deleted residues exhibited slightly reduced resistance. Deletion of 15 or 23 residues resulted in further decreases in resistance. Each altered ArsA was purified. The enzyme with the 5-residue insertion had the same affinity for ATP and Sb(III) as the wild-type enzyme. Enzymes with 5-, 10-, 15- or 23-residue deletions exhibited decreased affinity for both Sb(III) and ATP. The enzyme with a 23-residue deletion exhibited only basal ATPase activity and was unable to be allosterically activated by Sb(III). These results suggest that the linker has evolved to a length optimal for bringing the two halves of the protein into proper contact with each other, facilitating catalysis.  相似文献   

18.
The ATPase activity of ArsA, the catalytic subunit of the plasmid-encoded, ATP-dependent extrusion pump for arsenicals and antimonials in Escherichia coli, is allosterically activated by arsenite or antimonite. Magnesium is essential for ATPase activity. To examine the role of Asp45, mutants were constructed in which Asp45 was changed to Glu, Asn, or Ala. Cells expressing these mutated arsA genes lost arsenite resistance to varying degrees. Purified D45A and D45N enzymes were inactive. The purified D45E enzyme exhibited approximately 5% of the wild type activity with about a 5-fold decrease in affinity for Mg2+. Intrinsic tryptophan fluorescence was used to probe Mg2+ binding. ArsA containing only Trp159 exhibited fluorescence enhancement upon the addition of MgATP, which was absent in D45N and D45A. As another measure of conformation, limited trypsin digestion was used to estimate the surface accessibility of residues in ArsA. ATP and Sb(III) synergistically protected wild type ArsA from trypsin digestion. Subsequent addition of Mg2+ increased trypsin sensitivity. D45N and D45A remained protected by ATP and Sb(III) but lost the Mg2+ effect. D45E exhibited an intermediate Mg2+ response. These results indicate that Asp45 is a Mg2+-responsive residue, consistent with its function as a Mg2+ ligand.  相似文献   

19.
The ArsA ATPase is the catalytic subunit of a pump that is responsible for resistance to arsenicals and antimonials in Escherichia coli. Arsenite or antimonite allosterically activates the ArsA ATPase activity. ArsA homologues from eubacteria, archaea and eukarya have a signature sequence (DTAPTGHT) that includes a conserved histidine. The ArsA ATPase has two such conserved motifs, one in the NH2-terminal (A1) half and the other in the COOH-terminal (A2) half of the protein. These sequences have been proposed to be signal transduction domains that transmit the information of metal occupancy at the allosteric to the catalytic site to activate ATP hydrolysis. The role of the conserved residues His148 and His453, which reside in the A1 and A2 signal transduction domains respectively, was investigated by mutagenesis to create H148A, H453A or H148A/H453A ArsAs. Each altered protein exhibited a decrease in the V max of metalloid-activated ATP hydrolysis, in the order wild type ArsA>H148A>H453A>H148A/H453A. These results suggest that the histidine residues play a role in transmission of the signal between the catalytic and allosteric sites.  相似文献   

20.
Thermodynamic properties of 12 different F1-ATPase enzymes were analyzed in order to gain insights into the catalytic mechanism and the nature of energy coupling to delta mu H+. The enzymes were normal soluble Escherichia coli F1, a group of nine beta-subunit mutant soluble E. coli F1 enzymes (G142S, K155Q, K155E, E181Q, E192Q, M209I, D242N, D242V, R246C), and both soluble and membrane-bound bovine heart mitochondrial F1. Unisite activity was studied by use of Gibbs free energy diagrams, difference energy diagrams, and derivation of linear free energy relationships. This allowed construction of binding energy diagrams for both the unisite ATP hydrolysis and ATP synthesis reaction pathways, which were in agreement. The binding energy diagrams showed that the step of Pi binding is a major energy-requiring step in ATP synthesis, as is the step of ATP release. It is suggested that there are two major catalytic enzyme conformations, and ATP- and an ADP-binding conformation. The effects of the mutations on the rate-limiting steps of multisite as compared to unisite activity were correlated, suggesting a direct link between the rate-limiting steps of the two types of activity. Multisite activity was analyzed by Arrhenius plots and by study of relative promotion from unisite to multisite rate. Changes in binding energy due to mutation were seen to have direct effects on multisite catalysis. From all the data, a model is derived to describe the mechanism of ATP synthesis. ATP hydrolysis, and energy coupling to delta mu H+ in F1F0-ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号