首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant breeding data comprise unbalanced phenotypic data for inbreds with complex pedigrees. As traditional methods to map quantitative trait loci (QTL) cannot exploit plant breeding data, an alternative approach is QTL mapping via a mixed-model procedure. Our objective was to validate mixed-model QTL mapping for self-pollinated crops by detecting QTL for kernel hardness and dough strength from data in a bread wheat (Triticum aestivum L.) breeding program. We studied 80 parental and 373 experimental inbreds genotyped for 65 simple sequence repeat (SSR) markers and three candidate loci. The methodology involved three steps: variance component estimation, single-marker analyses, and a final multiple-marker analysis with marker effects treated as fixed effects. Two QTLs for kernel hardness were detected on chromosomes 1A (close to candidate locus GluA3) and 5D (close to candidate locus Ha). Four QTLs were detected for dough strength on chromosomes 1A, 1B, 1D, and 5B. Candidate gene GluA1, which was associated with dough strength, was the only candidate locus found significant. Results were consistent with previously reported markers and QTLs associated with kernel hardness and dough strength. Unlike previous studies that have assumed QTL effects as random, the assumption of fixed marker effects identified the favorable marker alleles to select for. We conclude that the detection of previously mapped QTL validates the usefulness of mixed-model QTL mapping in the context of a plant-breeding program.  相似文献   

2.
Wheat quality factors are critical in determining the suitability of wheat (Triticum aestivum L.) for end-use product and economic value, and they are prime targets for marker-assisted selection. Objectives of this study were to identify quantitative trait loci (QTLs) that ultimately influence wheat market class and milling quality. A population of 132 F12 recombinant inbred lines (RILs) was derived by single-seed descent from a cross between the Chinese hard wheat line Ning7840 and the soft wheat cultivar Clark and grown at three Oklahoma locations from 2001 to 2003. Milling factors such as test weight (volumetric grain weight, TW), kernel weight (KW), and kernel diameter (KD) and market class factors such as wheat grain protein content (GPC) and kernel hardness index (HI) were characterized on the basis of a genetic map constructed from 367 SSR and 241 AFLP markers covering all 21 chromosomes. Composite interval mapping identified eight QTLs for TW, seven for KW, six for KD, two each for GPC and HI measured by near-infrared reflectance (NIR) spectroscopy, and four for HI measured by single kernel characterization system. Positive phenotypic correlations were found among milling factors. Consistent co-localized QTLs were identified for TW, KW, and KD on the short arms of chromosomes 5A and 6A. A common QTL was identified for TW and KD on the long arm of chromosome 5A. A consistent major QTL for HI peaked at the Pinb-D1 locus on the short arm of chromosome 5D and explained up to 85% of the phenotypic variation for hardness. We identified QTLs for GPC on 4B and the short arm of 3A chromosomes. The consistency of quality factor QTLs across environments reveals their potential for marker-assisted selection.  相似文献   

3.
Kernel hardness or texture, used to classify wheat (Triticum aestivum L.) into soft and hard classes, is a major determinant of milling and baking quality. Wheat genotypes in the soft class that are termed ‘extra-soft’ (with kernel hardness in the lower end of the spectrum) have been associated with superior end-use quality. In order to better understand the relationship between kernel hardness, milling yield, and various agronomic traits, we performed quantitative trait mapping using a recombinant inbred line population derived from a cross between a common soft wheat line and a genotype classified as an ‘extra-soft’ line. A total of 47 significant quantitative trait loci (QTL) (LOD ≥ 3.0) were identified for nine traits with the number of QTL affecting each trait ranging from three to nine. The percentage of phenotypic variance explained by these QTL ranged from 3.7 to 50.3%. Six QTL associated with kernel hardness and break flour yield were detected on chromosomes 1BS, 4BS, 5BS, 2DS, 4DS, and 5DL. The two most important QTL were mapped onto orthologous regions on chromosomes 4DS (Xbarc1118Rht-D1) and 4BS (Xwmc617Rht-B1). These results indicated that the ‘extra-soft’ characteristic was not controlled by the Hardness (Ha) locus on chromosome 5DS. QTL for eight agronomic traits occupied two genomic regions near semi-dwarf genes Rht-D1 on chromosome 4DS and Rht-B1 on chromosome 4BS. The clustering of these QTL is either due to the pleiotropic effects of single genes or tight linkage of genes controlling these various traits.  相似文献   

4.
The grain hardness locus, Ha, is located at the distal end of the short arm of chromosome 5D in wheat. Three polypeptides, puroindoline-a, puroindoline-b, and grain softness protein (GSP-1), have been identified as components of friabilin, a biochemical marker for grain softness, and the genes for these polypeptides are known to be tightly linked to the Ha locus. However, this region of the chromosome 5D has not been well characterized and the physical distance between the markers is not known. Separate lambda clones containing the puroindoline-a gene and the puroindoline-b gene have been isolated from an Aegilops tauschii (the donor of the D genome to wheat) genomic lambda library and investigated. Considerable variation appears to exist in the organization of the region upstream of the gene for puroindoline-b among species closely related to wheat. Using in situ hybridization the genes for puroindoline-a, -b, and GSP-1 were demonstrated to be physically located at the tip of the short arm of chromosome 5 of A. tauschii. Four overlapping clones were isolated from a large-insert BAC library constructed from A. tauschii and of these one contained genes for all of puroindoline-a, puroindoline-b, and GSP-1. The gene for puroindoline-a is located between the other two genes at a distance no greater than approximately 30 kb from either gene. The BAC clone containing all three known genes was used to screen a cDNA library constructed from hexaploid wheat and cDNAs that could encode novel polypeptides were isolated.  相似文献   

5.
The quantitative trait loci (QTL) associated with individual characteristics of grain and flour quality in wheat lines grown under contrasting environmental conditions were mapped. Overall, 22 QTL that manifested under contrasting environmental conditions with various significances were detected on 10 chromosomes. Grain hardness and vitreousness were associated with three loci on chromosomes 5D, 6A, and 3A, while the gluten content, with two loci on chromosomes 5B and 7A. Dough extensibility was associated with only one QTL localized in the region of Glu-A1 locus. One of the loci determining flour and dough strengths is located in the region of Gli-B1 and Glu-B3 loci and the rest, in various regions of chromosomes 1B, 5D, and 4B, where no particular genes associated with grain quality have been yet found. The detected QTL can be used in further experiments on genetic control of gluten formation and quality in wheat.  相似文献   

6.
Kernel size and morphology influence the market value and milling yield of bread wheat (Triticum aestivum L.). The objective of this study was to identify quantitative trait loci (QTLs) controlling kernel traits in hexaploid wheat. We recorded 1000-kernel weight, kernel length, and kernel width for 185 recombinant inbred lines from the cross Rye Selection 111 × Chinese Spring grown in 2 agro-climatic regions in India for many years. Composite interval mapping (CIM) was employed for QTL detection using a linkage map with 169 simple sequence repeat (SSR) markers. For 1000-kernel weight, 10 QTLs were identified on wheat chromosomes 1A, 1D, 2B, 2D, 4B, 5B, and 6B, whereas 6 QTLs for kernel length were detected on 1A, 2B, 2D, 5A, 5B and 5D. Chromosomes 1D, 2B, 2D, 4B, 5B and 5D had 9 QTLs for kernel width. Chromosomal regions with QTLs detected consistently for multiple year-location combinations were identified for each trait. Pleiotropic QTLs were found on chromosomes 2B, 2D, 4B, and 5B. The identified genomic regions controlling wheat kernel size and shape can be targeted during further studies for their genetic dissection.  相似文献   

7.
The puroindoline genes (Pina and Pinb) are the functional components of the common or bread wheat (Triticum aestivum L.) grain hardness locus that are responsible for kernel texture. In this study, four puroindoline b-2 variants were physically mapped using nulli-tetrosomic lines of bread wheat cultivar Chinese Spring and substitution lines of durum wheat (Triticum turgidum L.) cultivar Langdon. Results indicated that Pinb-2v1 was on 7D of Chinese Spring, Pinb-2v2 on 7B of Chinese Spring, Pinb-2v3 on 7B of Chinese Spring and Langdon, and Pinb-2v4 on 7A of Chinese Spring and Langdon. A new puroindoline b-2 variant, designated Pinb-2v5, was identified at the puroindoline b-2 locus of durum wheat cultivar Langdon, with a difference of only five single nucelotide polymorphisms compared with Pinb-2v4. Sequencing results indicated that, in comparison with the Pinb-2v3 sequence (AM99733 and GQ496618 with one base-pair modification of G to T at 6th position, designated Pinb-2v3a) in bread wheat cultivar Witchta, the coding region of Pinb-2v3 in 12 durum wheat cultivars had a single nucleotide change from T to C at the 311th position, resulting in a corresponding amino acid change from valine to alanine at the 104th position. This new allele was designated Pinb-2v3b. The study of puroindoline b-2 gene polymorphism in CIMMYT and Italian durum wheat germplasm and discovery of a novel puroindoline b-2 variant could provide useful information for further understanding the molecular and genetic basis of kernel hardness and illustrating gene duplication events in wheat.  相似文献   

8.
Wheat has a vital position in agriculture because it is a staple food for masses and variation in grain hardness governs its applications. Soft wheats have softer endosperm texture that mills easily, so needs less energy to mill, produces smaller particles, and small amount of starch is damaged after milling as compared to hard wheat. Soft texture results from higher level of friabilin whereas hard texture results from low level of friabilin on starch granule surface. Friabilin, a marker of kernel texture is primarily composed of Puroindolines (PINs) and its genes (Pins) are located on the Hardness (Ha) locus. The Pins are the molecular-genetic basis of kernel softness in wheat. When both Pins are in their ‘wild state’ (Pina-D1a and Pinb-D1a), wheat kernel is soft. Absence or mutation in one of the Pins results in hard grain texture with different effects on end use and milling qualities. Pina-D1b genotypes gave harder grain texture, higher protein content, water absorption of flour, damaged starch granules and greater flour yield than hard wheat. Recently, other Pins like genes, Pin b variant genes located on the long arm of chromosome 7A were reported in bread wheat with more than 70% similarity to Pinb (Pinb-D1a) at the DNA level. Other genes located on chromosomes 1A, 2A, 5A, 7A, 5B, 2D and 6D also affect kernel texture. However the main determinants are the variants in the allelic diversity of Puroindoline family genes. Contemporary studies show that Pins are multifunctional family of genes having a range of functions from grain hardness to natural defense against insects and pathogens such as viruses, bacteria and fungi.  相似文献   

9.
Individual plants from the BC1F6 and BC1F8 backcross progenies of barley-wheat [H. marinum subsp. gussoneanum Hudson (=H. geniculatum All.) (2n = 28) × T. aestivum L. (2n = 42)] and the BC1F6 progeny of their amphiploids were used to obtain alloplasmic euploid (2n = 42) lines L-28, L-29, and L-49 and alloplasmic telocentric addition (2n = 42 + 2t) lines L-37, L-38, and L-50. The lines were examined by genomic in situ hybridization (GISH), microsatellite analysis, chromosome C-banding, and PCR analysis of the mitochondrial 18S/5S repeat. Lines L-29 and L-49 were characterized by substitution of wild barley chromosome 7H1 for common wheat chromosome 7D. In line L-49, common wheat chromosomes 1B, 5D, and 7D were substituted with homeologous barley chromosomes. Lines L-37, L-38, and L-50 each contained a pair of telocentric chromosomes, which corresponded to barley chromosome arm 7H1L. All lines displayed heteroplasmy for the mitochondrial 18S/5S locus; i.e., both barley and wheat sequences were found. Original Russian Text ? N.V. Trubacheeva, E.D. Badaeva, I.G. Adonina, L.I. Belova, E.P. Devyatkina, L.A. Pershina, 2008, published in Genetika, 2008, Vol. 44, No. 1, pp. 81–89.  相似文献   

10.
Advanced backcross quantitative trait locus (AB-QTL) analysis was used to identify QTLs for yield and yield components in a backcross population developed from a cross between hard red winter wheat (Triticum aestivum L.) variety Karl 92 and the synthetic wheat line TA 4152-4. Phenotypic data were collected for agronomic traits including heading date, plant height, kernels per spike, kernel weight, tiller number, biomass, harvest index, test weight, grain yield, protein content, and kernel hardness on 190 BC2F2:4 lines grown in three replications in two Kansas environments. Severity of wheat soilborne mosaic virus (WSBMV) reaction was evaluated at one location. The population was genotyped using 151 microsatellite markers. Of the ten putative QTLs identified, seven were located on homoeologous group 2 and group 3 chromosomes. The favorable allele was contributed by cultivated parent Karl 92 at seven QTLs including a major one for WSBMV resistance, and by the synthetic parent at three QTLs: for grain hardness, kernels per spike, and tiller number. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

11.
Kernel characteristics, particularly kernel weight, kernel size, and grain protein content, are important components of grain yield and quality in wheat. Development of high performing wheat cultivars, with high grain yield and quality, is a major focus in wheat breeding programs worldwide. Here, we report chromosome regions harboring genes that influence kernel weight, kernel diameter, kernel size distribution, grain protein content, and grain yield in hard red spring wheat breeding lines adapted to the Upper Midwest region of the United States. A genetic linkage map composed of 531 SSR and DArT marker loci spanned a distance of 2,505 cM, covering all 21 chromosomes of wheat. Stable QTL clusters influencing kernel weight, kernel diameter, and kernel size distribution were identified on chromosomes 2A, 5B, and 7A. Phenotypic variation explained by individual QTL at these clusters varied from 5 to 20% depending on the trait. A QTL region on chromosome 2B confers an undesirable pleiotropic effect or a repulsion linkage between grain yield (LOD = 6.7; R 2 = 18%) and grain protein content (LOD = 6.2; R 2 = 13.3%). However, several grain protein and grain yield QTL independent of each other were also identified. Because some of the QTL identified in this study were consistent across environments, DNA markers will provide an opportunity for increasing the frequency of desirable alleles through marker-assisted selection.  相似文献   

12.
A intervarietal genetic map and QTL analysis for yield traits in wheat   总被引:9,自引:0,他引:9  
A new genetic linkage map was constructed based on recombinant inbred lines (RILs) derived from the cross between the Chinese winter wheat (Triticum aestivum L.) varieties, Chuang 35050 and Shannong 483 (ChSh). The map included 381 loci on all the wheat chromosomes, which were composed of 167 SSR, 94 EST-SSR, 76 ISSR, 26 SRAP, 15 TRAP, and 3 Glu loci. This map covered 3636.7 cM with 1327.7 cM (36.5%), 1485.5 cM (40.9%), and 823.5 cM (22.6%) for A, B, and D genome, respectively, and contained 13 linkage gaps. Using the RILs and the map, we detected 46 putative QTLs on 12 chromosomes for grain yield (GY) per m2, thousand-kernel weight (TKW), spike number (SN) per m2, kernel number per spike (KNS), sterile spikelet number per spike (SSS), fertile spikelet number per spike (FSS), and total spikelet number per spike (TSS) in four environments. Each QTL explained 4.42–70.25% phenotypic variation. Four QTL cluster regions were detected on chromosomes 1D, 2A, 6B, and 7D. The most important QTL cluster was located on chromosome 7D near the markers of Xwmc31, Xgdm67, and Xgwm428, in which 8 QTLs for TKW, SN, SSS and FSS were observed with very high contributions (27.53–67.63%).  相似文献   

13.
We present a high density physical map of homoeologous group 7 chromosomes from Triticum aestivum L. using a series of 54 deletion lines, 6 random amplified polymorphic DNA (RAPD) markers and 91 cDNA or genomic DNA clones from wheat, barley and oat. So far, 51 chromosome segments have been distinguished by molecular markers, and 54 homoeoloci have been allocated among chromosomes 7A, 7B and 7D. The linear order of molecular markers along the chromosomes is almost identical in the A- B- and D-genome of wheat. In addition, there is colinearity between the physical and genetic maps of chromosomes 7A, 7B and 7D from T. aestivum, indicating gene synteny among the Triticeae. However, comparison of the physical map of chromosome 7D from T. aestivum with the genetic map from Triticum tauschii some markers have been shown to be physically allocated with distortion in more distal chromosome regions. The integration of genetic and physical maps could assist in estimating the frequency and distribution of recombination in defined regions along the chromosome. Physical distance did not correlate with genetic distance. A dense map facilitates the detection of multiple rearrangements. We present the first evidence for an interstitial inversion either on chromosome arm 7AS or 7DS of Chinese Spring. Molecularly tagged chromosome regions (MTCRs) provide landmarks for long-range mapping of DNA fragments.  相似文献   

14.
The Russian wheat aphid (RWA), Diuraphis noxia Mordvilko, is a serious economic pest of wheat and barley in North America, South America, and South Africa. Using aphid-resistant cultivars has proven to be a viable tactic for RWA management. Several dominant resistance genes have been identified in wheat, Triticum aestivum, including Dn1 in PI 137739, Dn2 in PI 262660, and at least three resistance genes (Dn5+) in PI 294994. The identification of RWA-resistant genes and the development of resistant cultivars may be accelerated through the use of molecular markers. DNA of wheat from near-isogenic lines and segregating F2 populations was amplified with microsatellite primers via PCR. Results revealed that the locus for wheat microsatellite GWM111 (Xgwm111), located on wheat chromosome 7DS (short arm), is tightly linked to Dn1, Dn2 and Dn5, as well as Dnx in PI 220127. Segregation data indicate RWA resistance in wheat PI 220127 is also conferred by a single dominant resistance gene (Dnx). These results confirm that Dn1, Dn2 and Dn5 are tightly linked to each other, and provide new information about their location, being 7DS, near the centromere, instead of as previously reported on 7DL. Xgwm635 (near the distal end of 7DS) clearly marked the location of the previously suggested resistance gene in PI 294994, here designated as Dn8. Xgwm642 (located on 1DL) marked and identified another new gene Dn9, which is located in a defense gene-rich region of wheat chromosome 1DL. The locations of markers and the linked genes were confirmed by di-telosomic and nulli-tetrasomic analyses. Genetic linkage maps of the above RWA resistance genes and markers have been constructed for wheat chromosomes 1D and 7D. These markers will be useful in marker-assisted breeding for RWA-resistant wheat. Received: 17 May 2000 / Accepted: 13 June 2000  相似文献   

15.
The quantitative trait loci (QTL) associated with individual characteristics of grain and flour quality in wheat lines grown under contrasting environmental conditions were mapped. Overall, 22 QTL that manifested under contrasting environmental conditions with various significances were detected on 10 chromosomes. Grain hardness and vitreousness were associated with three loci on chromosomes 5D, 6A, and 3A, while the gluten content, with two loci on chromosomes 5B and 7A. Dough extensibility was associated with only one QTL localized in the region of Glu-A1 locus. One of the loci determining flour and dough strengths is located in the region of Gli-B1 and Glu-B3 loci and the rest, in various regions of chromosomes 1B, 5D, and 4B, where no particular genes associated with grain quality have been yet found. The detected QTL can be used in further experiments on genetic control of gluten formation and quality in wheat.  相似文献   

16.
Polyphenol oxidase (PPO) enzymatic activity is a major cause in time-dependent discoloration in wheat dough products. The PPO-A1 and PPO-D1 genes have been shown to contribute to wheat kernel PPO activity. Recently a novel PPO gene family consisting of the PPO-A2, PPO-B2, and PPO-D2 genes has been identified and shown to be expressed in wheat kernels. In this study, the sequences of these five kernel PPO genes were determined for the spring wheat cultivars Louise and Penawawa. The two cultivars were found to be polymorphic at each of the PPO loci. Three novel alleles were isolated from Louise. The Louise X Penawawa mapping population was used to genetically map all five PPO genes. All map to the long arm of homeologous group 2 chromosomes. PPO-A2 was found to be located 8.9 cM proximal to PPO-A1 on the long arm of chromosome 2A. Similarly, PPO-D1 and PPO-D2 were separated by 10.7 cM on the long arm of chromosome 2D. PPO-B2 mapped to the long arm of chromosome 2B and was the site of a novel QTL for polyphenol oxidase activity. Five other PPO QTL were identified in this study. One QTL corresponds to the previously described PPO-D1 locus, one QTL corresponds to the PPO-D2 locus, whereas the remaining three are located on chromosome 2B.  相似文献   

17.
A microarray analysis of wheat grain hardness   总被引:7,自引:0,他引:7  
Grain hardness is an important quality characteristic of wheat grain, and considerable research effort has focused on characterising the genetic and biochemical basis underlying the hardness phenotype. Previous research has shown that the predominant difference between hard and soft seeds is linked to the puroindoline (PIN) proteins. In this study the near-isogenic lines of Heron and Falcon, which differ only in the grain hardness character, were compared using a cDNA microarray consisting of approximately 5,000 unique cDNA clones that were isolated from wheat and barley endosperm tissue. Our analysis showed that major differences in gene expression were evident for puroindoline-a (Pina), with a minor but not consistent change in the expression of puroindoline-b (Pinb). These observations were confirmed using a 16,000 unique cDNA microarray in a comparison of hard wheats with either the Pina null or Pinb mutation.  相似文献   

18.
Durum wheat (Triticum turgidum L. var. durum) is traditionally used for the production of numerous types of pasta, and significant amounts are also used for bread-making, particularly in southern Italy. The research reported here centres on the glutenin subunits 1Dx5 and 1Dy10 encoded by chromosome 1D, and whose presence in hexaploid wheats is positively correlated with higher dough strength. In order to study the effects of stable expression of the 1Dx5 and 1Dy10 glutenin subunits in different durum wheat genotypes, four cultivars commonly grown in the Mediterranean area (‘Svevo’, ‘Creso’, ‘Varano’ and ‘Latino’) were co-transformed, via particle bombardment of cultured immature embryos, with the two wheat genes Glu-D1-1d and Glu-D1-2b encoding the glutenin subunits, and a third plasmid containing the bar gene as a selectable marker. Protein gel analyses of T1 generation seed extracts showed expression of one or both glutenin genes in four different transformed durum wheat plants. One of these transgenic lines, DC2-65, showed co-suppression of all HMW-GS, including the endogenous ones. Transgene stability in the transgenic lines has been studied over four generations (T1–T4). Fluorescence in situ hybridization (FISH) analysis of metaphase chromosomes from T4 plants showed that the integration of transgenes occurred in both telomeric and centromeric regions. The three plasmids were found inserted at a single locus in two lines and in two loci on the same chromosome arm in one line. The fourth line had two transgenic loci on different chromosomes: one with both glutenin plasmids and a different one containing only the construct with the gene encoding the 1Dy10 glutenin subunit. Segregation of these two loci in subsequent generations allowed establishment of two sublines, one containing both 1Dx5 and 1Dy10 and the other containing only 1Dy10. Small-scale quality tests showed that accumulation of Dx5, Dy10 or both in transgenic durum wheat seeds resulted in doughs with stronger mixing characteristics. A. Gadaleta and A. E. Blechl have contributed equally to this work.  相似文献   

19.
The aneuploids of Chinese Spring wheat have been used to locate the genes(Ti-2) coding for a novel series of trypsin inhibitors to the long arms of the homoeologous group 5 chromosomes. Three allelic variants at the 5D locus were detected in a limited survey among wheat varieties, but no variation at the loci on either chromosome 5A or chromosome 5B was detected. Homoeoloci were found in a number of alien relatives, and in the majority of cases, these were present on the group 5 homoeologue. However, inAegilops umbellulata, theTi-U2 locus was located on a chromosome presumed to belong to homoeologous group 1. NoHordeum vulgare orH. chilense Ti-2 gene was expressed in a wheat background. This new marker will be especially useful as a screening mechanism for nullisomy of chromosome 5B in work aimed at introgression of alien chromatin into wheat.The Agricultural Genetics Company is thanked for financial support.  相似文献   

20.
The Russian wheat aphid is a significant pest problem in wheat and barley in North America. Genetic resistance in wheat is the most effective and economical means to control the damage caused by the aphid. Dn7 is a rye gene located on chromosome 1RS that confers resistance to the Russian wheat aphid. The gene was previously transferred from rye into a wheat background via a 1RS/1BL translocation. This study was conducted to genetically map Dn7 and to characterize the type of resistance the gene confers. The resistant line '94M370' was crossed with a susceptible wheat cultivar that also contains a pair of 1RS/1BL translocation chromosomes. The F2 progeny from this cross segregated for resistance in a ratio of 3 resistant: 1 susceptible, indicating a single dominant gene. One-hundred and eleven RFLP markers previously mapped on wheat chromosomes 1A, 1B and 1D, barley chromosome 1H and rye chromosome 1R, were used to screen the parents for polymorphism. A genetic map containing six markers linked to Dn7, encompassing 28.2 cM, was constructed. The markers flanking Dn7 were Xbcd1434 and XksuD14, which mapped 1.4 cM and 7.4 cM from Dn7, respectively. Dn7 confers antixenosis, and provides a higher level of resistance than that provided by Dn4. The applications of Dn7 and the linked markers in wheat breeding are discussed.Communicated by J. Dvorak  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号