首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ornithine carbamoyltransferase has been purified from the liver of the loggerhead turtle Caretta caretta by a single-step procedure using chromatography on an affinity column to which the transition-state analogue, delta-N-(phosphonoacetyl)-L-ornithine (delta-PALO), was covalently bound. The procedure employed yielded an enzyme which was purified 373-fold and was judged to be homogeneous by nondenaturing and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme showed a specific activity of 224. The molar mass of the C. caretta enzyme was approximately 112 kDa, the single band obtained by SDS-PAGE indicated a subunit molar mass of 39.5 kDa; hence, the enzyme is a trimer of identical subunits. It catalyzes an ordered sequential mechanism in which carbamoyl phosphate binds first, followed by L-ornithine. The Michaelis constants were 0.858 mM for L-ornithine and 0.22 mM for carbamoyl phosphate, the dissociation constant of the enzyme-carbamoyl phosphate complex was 0.50 mM.  相似文献   

2.
Polyphosphatase, an enzyme which hydrolyses highly polymeric polyphosphates to Pi, was purified 77-fold fromAcinetobacter johnsonii 210A by Q-Sepharose, hydroxylapatite and Mono-Q column chromatography. The native molecular mass estimated by gel filtration and native gel electrophoresis was 55 kDa. SDS-polyacrylamide gel electrophoresis indicated that polyphosphatase ofAcinetobacter johnsonii 210A is a monomer. The enzyme was specific for highly polymeric polyphosphates and showed no activity towards pyrophosphate and organic phosphate esters. The enzyme was inhibited by iodoacetamide and in the presence of 10 mM Mg2+ by pyro- and triphosphate. The apparent Km-value for polyphosphate with an average chain length of 64 residues was 5.9 µM and for tetraphosphate 1.2 mM. Polyphosphate chains were degraded to short chain polymers by a processive mechanism. Polyphosphatase activity was maximal in the presence of Mg2+ and K+.  相似文献   

3.
-Mannanase produced by Bacillus sp. W-2, isolated from decayed commercial konjak cake, was purified from the culture supernatant by (NH4)2 SO4 precipitation, adsorption to konjak gel, and column chromatography with DEAE-cellulose, Sephadex G-100 and Sephacryl S-200. Its molecular size was estimated by SDS-PAGE as 40 kDa, and by gel filtration as 36 kDa. The enzyme was most active at pH 7 and 70°C and was stable for at least 1 h between pH 5 and 10 and below 60°C. Its activity was completely inhibited by Hg2+. The enzyme hydrolysed galactomannan better than glucomannan and mainly produced mannose and mannobiose.The authors are with the Department of Bioproductive Science, Faculty of Agriculture, Utsunomiya University. Utsunomiya, Tochigi 321, Japan  相似文献   

4.
DEAE-cellulose column chromatography of Neurospora crassa soluble mycelial extracts leads to the resolution of three major protein kinase activity peaks designated PKI, PKII, and PKIII.PKII activity is stimulated by Ca2+ and Neurospora or brain calmodulin. Maximal stimulation was observed at 2 µM-free Ca2+ and 1 µg/ml of the modulator. The stimulatory effect of the Ca2+-calmodulin complex was blocked by EGTA and by some calmodulin antagonists such as phenothiazine drugs or compound 48/80.PKII phosphorylates different proteins, among which histone II-A at a low concentration and CDPKS, the synthetic peptide specific for Ca2+-calmodulin dependent protein kinases, are the best substrates. Some phosphorylation can be detected in the absence of any exogenous acceptor. PKII activity assayed in the presence of histone II-A or in the absence of exogenous phosphate acceptor (autophosphorylation) co-elute in a DEAE-cellulose column at 0.28 M NaCl. As result of the autophosphorylation reaction of the purified enzyme a main phosphorylated component of 70 kDa was resolved by SDS-polyacrylamide gel electrophoresis. It is possible that this component is an active part of this enzyme.  相似文献   

5.
Glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) was purified 386 fold to apparent homogeneity from the thermophilic cyanobacteriumSynechococcus sp. grown at optimum light intensities in batch cultures. The molecular mass of the tetrameric form of the enzyme was 160 kDa as determined by gel filtration and sucrose gradient centrifugation in a phosphate buffer containing DTT. The pH optimum for the oxidation of NADPH was broad (6–8) and the enzyme had a pI of 4.5. The turnover number was 36,000 min–1 at 40° C. The activation energy was 12.4 Kcal for t>29° C and 20.6 Kcal for t<29° C. The specific absorption coefficient, A 280 mm 1% 1cm of the pure enzyme in phosphate buffer at pH 6.8 was 15.2.By SDS gel electrophoresis molecular masses of 78 kDa and 39 kDa were found, indicating that the purified enzyme is a tetramer, probably a homotetramer.When Tris was used as buffer in the homogenization and phosphate and DTT were omitted, a high molecular form with a molecular mass above 500 kDa was found. This form was less active than the purified tetrameric form. Acetone and other organic solvents stimulated the native enzyme several fold.  相似文献   

6.
Summary NADP-dependent glutamate dehydrogenase from Dictyostelium discoideum was purified 9300 fold with a yield of 4.6%. The enzyme is a hexamer of apparent molecular weight 294 kDa on Sephacryl S400 and a subunit molecular weight of 52 kDa as determined by SDS gel electrophoresis. The apparent KmS for -ketoglutarate, NADPH and NH inf4 sup+ are 1.2 mM, 9.7 µM and 2.2 mM respectively, and the purified enzyme has a broad pH optimum with a peak at pH 7.75. GTP has a slight stimulatory effect (22% at 83 µM) as does ADP (11% at 1 mM), and AMP is slightly inhibitory (9% at 1 mM) whereas adenosine, ATP and cAMP have little or no effect. Neither the Zn2+ chelating compound 1,10-phenanthroline nor EDTA have any effect on the enzyme while p-hydroxymercuribenzoic acid inhibits enzyme activity (50% at 80 µM) yet N-ethylmaleimide does not.In addition, the NADP-GDH activity varies little during the various stages of morphogenesis.Abbreviations EDTA Ethylenediamine Tetraacetic Acid - Tris Tris(hydroxymethyl)aminomethane - Bis-tris bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane - TRITON X-100 iso-octylphenoxypoly-ethoxyethanol - pHMB p-Hydroxymercuribenzoic acid  相似文献   

7.
A periplasmatic phytate-degrading enzyme from Pantoea agglomerans isolated from soil was purified about 470-fold to apparent homogeneity with a recovery of 16% referred to the phytate-degrading activity in the crude extract. It behaved as a monomeric protein with a molecular mass of about 42 kDa. The purified enzyme exhibited a single pH optimum at 4.5. Optimum temperature for the degradation of phytate was 60°C. The kinetic parameters for the hydrolysis of sodium phytate were determined to be KM = 0.34 mmol/l and kcat = 21 s-1 at pH 4.5 and 37°C. The enzyme exhibited a narrow substrate selectivity. Only phytate and glucose-1-phosphate were identified as good substrates. Since this Pantoea enzyme has a strong preference for glucose-1-phosphate over phytate, under physiological conditions glucose-1-phosphate is its most likely substrate. The maximum amount of phosphate released from phytate by the purified enzyme suggests myo-inositol pentakisphosphate as the final product of enzymatic phytate degradation.  相似文献   

8.
Emodin O-methyltransferase, an enzyme catalyzing methylation of the 8-hydroxy group of emodin, was identified in the mould Aspergillus terreus IMI 16043, a (+)-geodin producing strain. The enzyme catalyzed the formation of questin from emodin and S-adenosyl-l-methionine. By chromatography on DEAE-cellulose, Phenyl Sepharose, Q-Sepharose, Hydroxyapatite, and CM-cellulose, emodin O-methyltransferase was purified to apparent homogeneity. The purified protein had a molecular weight of 322 kDa as estimated by gel filtration and 53.6 kDa as estimated by gel electrophoresis under denaturing conditions, suggesting that the active enzyme was a homohexamer. The enzyme showed pI 4.4 and optimum pH 7–8. Magnesium ion or manganese ion was not an absolute requirement, nor increased the enzyme activity. The enzyme had strict substrate specificity and very low Km values for both emodin (3.4×10-7 M) and S-adenosyl-l-methionine (4.1×10-6 M).Abbreviations EOMT emodin O-methyltransferase from A. terreus - SAM S-adenosyl-l-methionine - PAGE polyacrylamide gel electrophoresis  相似文献   

9.
A thermophilic microorganism producing bile salt hydrolase was isolated from hot water springs, Pali, Maharashtra, India. This microorganism was identified as Brevibacillus sp. by 16S rDNA sequencing. Bile salt hydrolase (BSH) was purified to homogeneity from this thermophilic source using Q-sepharose chromatography and its enzymatic properties were characterized. The subunit molecular mass of the purified enzyme was estimated to be 28 kDa by SDS-PAGE and, 28.2 kDa by MALDI-TOF analysis. The native molecular mass was estimated to be 56 kDa by gel filtration chromatography, indicating the protein to be a homodimer. The pH and temperature optimum for the enzyme catalysis were 9.0 and 60°C, respectively. Even though BSH from Brevibacillus sp. hydrolyzed all of the six major human bile salts, the enzyme preferred glycine conjugated substrates with apparent K M and k cat values of 3.08 μM and 6.32 × 102 s−1, respectively, for glycodeoxycholic acid. The NH2-terminal sequence of the purified enzyme was determined and it did not show any homology with other bacterial bile salt hydrolases. To our knowledge, this is the first report describing the purification of BSH to homogeneity from a thermophilic source. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
An arginine specific protease, Sp-protease, was purified by column chromatography from freeze-dried Spirulina platensis using a five-step process. Purified Sp-protease has a molecular weight of 80 kDa. It hydrolyzed the synthetic substrates containing arginine residue in the P1 position but did not hydrolyze synthetic substrates containing other amino acid residues, including lysine residue in the P1 position. Among the synthetic substrates tested, a substrate of plasminogen activator (Pyr-Gly-Arg-MCA) was hydrolyzed most effectively with the enzyme (Km = 5.5 × 10−6 M), and fibrin gel was solubilized via activation of intrinsic plasminogen to plasmin with the enzyme. Activity was inhibited completely with camostat mesilate (Ki = 1.1 × 10−8 M) and leupeptin (Ki = 3.9 × 10−8 M) but was not inhibited with Nα-tosyl-L-lysine chloromethyl ketone (TLCK). The optimum pH of the enzyme has a range of pH 9.0 to pH 11.0. The optimum temperature was 50°C; the enzyme was stable at 0–50°C.  相似文献   

11.
Carboxypeptidase produced by Monascus purpureus IFO 4478 was purified to homogeneity. The purified enzyme is a heterodimer with a molecular mass of 132 kDa and consists of two subunits of 64 and 67 kDa. It is an acidic glycoprotein with an isoelectric point of 3.67 and 17.0% carbohydrate content. The optimum pH and temperature were 4.0 and 40 °C, respectively. The enzyme was stable between pH 2.0 and 8.0 at 37 °C for 1 h, and up to 50 °C at pH 5.0 for 15 min. The enzyme was strongly inhibited by piperastatin A, diisopropylfluoride phosphate (DFP), phenylmethylsulfonylfluoride (PMSF), and chymostatin, suggesting that it is a chymotrypsin-like serine carboxypeptidase. Monascus purpureus carboxypeptidase was also strongly inhibited by p-chloromercuribenzoic acid (PCMB) but not by ethylenediaminetetraacetic acid (EDTA) and 1,10-phenanthroline, indicating that it requires cysteine residue but not metal ions for activity. Benzyloxycarbonyl-l-tyrosyl-l-glutamic acid (Z-Tyr-Glu), among the substrates tested, was the best substrate of the enzyme. The Km, Vmax, Kcat, and Kcat/Km values of the enzyme for Z-Tyr-Glu at pH 4.0 and 37 °C were 0.86 mM, 0.917 mM min–1, 291 s–1, and 339 mM–1 s–1, respectively.  相似文献   

12.
Trigonelline (TRG), which act as a cell cycle regulator and a compatible solute in response to salinity and water-stress, is the N-methyl conjugate of nicotinic acid the formation of which is catalyzed by S-adenosyl-L-methionine nicotinic acid-N-methyltransferase. The enzyme was purified 2650-fold from soybean (Glycine max L.) leaves with a recovery of 4 %. The purification procedure included ammonium sulfate (45 – 60 %) precipitation, linear gradient DEAE-Sepharose chromatography, adenosine-agarose affinity chromatography, hydroxyapatite chromatography and gel filtration (Sephacryl-S-200). The purified enzyme preparation showed a major band with a molecular mass of 41.5 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis that is related to the enzyme activity. The native enzyme had a molecular mass of about 85 kDa as estimated by gel filtration. The Km values for S-adenosyl-L-methionine and nicotinic acid were 31 and 12.5 M, respectively. The purified enzyme showed optimum activity at pH 6.5 and temperature of 40 – 45 °C. High concentration of dithiothreitol (10 mM) and glycerol (20 %) stabilize the enzyme during purification and storage. Hg2+ strongly inhibits enzyme activity.  相似文献   

13.
Extracellular mannanase from Bacillus subtilis NM-39, an isolate from Philippine soil, was purified about 240-fold with a yield of 7.3% by ammonium sulphate fractionation, DEAE-Toyopearl chromatography and Sephacryl S-200 gel filtration. Its M r was 38 kDa and it had a pI of 4.8 and optimum activity at pH 5.0 and 55°C. It was stable at pH 4 to 9 and below 55°C. The amino acid composition of the enzyme was in the order Gly>Glx>Ser and Asx>Ala.N.S. Mendoza and L.M. Joson are with Industrial Technology Development Institute, Department of Science and Technology, Manila, Philippines. M. Arai and T. Kawaguchi are with Department of Agricultural Chemistry, College of Agriculture, University of Osaka Prefecture, Sakai, Osaka 593, Japan; T. Yoshida is with Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan.  相似文献   

14.
An -poly-l-lysine-degrading enzyme (PLD) from Kitasatospora sp. CCTCC M205012 has been purified to homogeneity by three steps of anion-exchange chromatography including DEAE-Sepharose, Source 15Q and Mono Q, with a 500-fold increase in specific activity and 40.9% yield. The PLD has a molecular mass of approximately 87.0 kDa and consists of two identical subunits with a molecular mass of 43.6 kDa. Electrophoretic shows that the PLD isoelectric point was about 7.2. The optimum temperature and pH for the PLD was 30 °C and 7.0, respectively. The PLD was deactivated by EDTA, which was indicated that the enzyme was a metallo enzyme. The activity of PLD was stimulated by Co2+ and inhibited by Ca2+ remarkably. The apparent Km with l-lysyl-p-nitroanilide as substrate was 0.216 mM and the Vmax was 0.112 mmol/min mg. The PLD was an exo-type enzyme and monomers of l-lysine were detected during the enzymatic degradation of -PL.  相似文献   

15.
A newly isolated Bacillus species, which grew optimally at 30°C and pH 10, produced a carboxymethylcellulase in a medium containing 10 g CM-cellulose/l. The enzyme, when partially purified by gel filtration, had a mass of about 29 kDa as determined by both SDS-PAGE and gel filtration chromatography. It was optimally active at pH 9.5 and 40°C, and was stable from pH 7 to 11 at 4°C for 24 h. The enzyme was stimulated by Ca2+ (1mm) but was completely inhibited by Hg2+ (1mm). Neither EDTA nor EGTA (10mm) affected the activity.The author is with the Department of Biological Sciences, University of Jordan. PO Box 2686, Amman 11181, Jordan  相似文献   

16.
Summary An X-prolyl-dipeptidylaminopep tidase (Pep-XP) was purified from the crude intracellular extract of Lactococcus lactis subsp. cremoris NRRL 634 by ion exchange and gel filtration chromatographies. The enzyme was purified 80-fold with a recovery of 6%, and appeared as a single band with a molecular weight of about 80 kDa on polyacrylamide gel electrophoresis with sodium dodecyl sulphate (SDS-PAGE). The peptidase showed its maximal activity on arginyl-proline-p-nitroanilide at pH 7.0 and at a temperature of 45 °C, although there was a good activity of Pep-XP in the pH range of 5.5–7.0 and temperatures between 40 and 50 °C. The Michaelis constant (K m) and the maximum reaction velocity (V max) values were 0.92 mM and 7.9 U/mg protein min, respectively. The activity of Pep-XP was completely inhibited by phenylmethanesulphonyl fluoride, an inhibitor of serine peptidases, and metal chelators had little effect on enzyme activity. The purified enzyme hydrolyzed synthetic substrates whose structure is X-Pro-Y like Lys-Pro-pNA, but did not hydrolyse Pro-pNA or azocasein, showing that the enzyme did not have aminopeptidase or endopeptidase activities.  相似文献   

17.
Cytosolic glycerol-3-phosphate dehydrogenase was purified from jerboa (Jaculus orientalis) skeletal muscle and its physical and kinetic properties investigated. The purification method consisted of a multi-step procedure and this procedure is presented. The specific activity of the purified enzyme is 53.6 U/mg of protein, representing a 77-fold increase in specific activity. The apparent Michaelis constant (Km) for dihydroxyacetone is 137.39 (± 25.56) M whereas the Km for glycerol-3-phosphate is 468.66 (±27.59) M. The kinetic mechanism of purified enzyme is ordered Bi-Bi and this result is confirmed by the product inhibition pattern. Under the conditions of assay, the pH optimum occurs at pH 7.7 for the reduction of dihydroxyacetone phosphate and at pH 9.0 for glycerol-3-phosphate oxidation. In the direction of dihydroxyacetone phosphate, the optimal temperature is 35°C. The molecular weight of the purified enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 33,000 (±1,000), whereas non-denaturing polyacrylamide gel yields a molecular weight of 72,000 (±2,000), suggesting that the enzyme may exist as a dimer. A polyclonal antiserum raised against the purified enzyme was used to localize the enzyme in different jerboa tissues by Western blot method. The purified enzyme is sensitive to N-ethylmaleimide, and incubation of the enzyme with 20 mm N-ethylmaleimide resulted in a complete loss of catalytic activity. The purified enzyme is inhibited by several metal ions including Zn2+ and by 2,4-dichlorophenoxyacetic acid.  相似文献   

18.
A phytase (EC 3.1.3.8) from Pseudomonas syringae MOK1 was purified to apparent homogeneity in two steps employing cation and an anion exchange chromatography. The molecular weight of the purified enzyme was estimated to be 45 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The optimal activity occurred at pH 5.5 and 40°C. The Michaelis constant (K m ) and maximum reaction rate (Vmax) for sodium phytate were 0.38 mM and 769 U/mg of protein, respectively. The enzyme was strongly inhibited by Cu2+, Cd2+, Mn2+, and ethylenediaminetetraacetic acid (EDTA). It showed a high substrate specificity for sodium phytate with little or no activity on other phosphate conjugates. The enzyme efficiently released orthophosphate from wheat bran and soybean meal.Received: 9 September 2002 / Accepted: 6 December 2002  相似文献   

19.
Pseudomonas sp. CBS3 is capable of growing with 4-chlorobenzoate as sole source of carbon and energy. The removal of the chlorine of 4-chlorobenzoate is performed in the first degradation step by an enzyme system consisting of three proteins. A 4-halobenzoate-coenzyme A ligase activates 4-chlorobenzoate in a coenzyme A, ATP and Mg2+ dependent reaction to 4-chlorobenzoyl-coenzyme A. This thioester intermediate is dehalogenated by the 4-chlorobenzoyl-coenzyme A dehalogenase. Finally coenzyme A is split off by a 4-hydroxybenzoyl-CoA thioesterase to form 4-hydroxybenzoate. The involved 4-chlorobenzoyl-coenzyme A dehalogenase was purified to apparent homogeneity by a five-step purification procedure. The native enzyme had an apparent molecular mass of 120,000 and was composed of four identical polypeptide subunits of 31 kDa. The enzyme displayed an isoelectric point of 6.7. The maximal initial rate of catalysis was achieved at pH 10 at 60 °C. The apparent K m value for 4-chlorobenzoyl-coenzyme A was 2.4–2.7 µM. V max was 1.1 × 10–7 M sec–1 (2.2 µmol min–1 mg–1 of protein). The NH2-terminal amino acid sequence was determined. All 4-halobenzoyl-coenzyme A thioesters, except 4-fluorobenzoyl-coenzyme A, were dehalogenated by the 4-chlorobenzoyl-CoA dehalogenase.Abbreviations CBA chlorobenzoate - CoA coenzyme A - HBA hydroxybenzoate - DTT dithiothreitol - HPLC high performance liquid chromatography - PAGE polyacrylamide gel electrophoresis  相似文献   

20.
Bacillus species producing a thermostable phytase was isolated from soil, boiled rice, and mezu (Korean traditinal koji). The activity of phytase increased markedly at the late stationary phase. An extracellular phytase from Bacillus sp. KHU-10 was purified to homogeneity by acetone precipitation and DEAE-Sepharose and phenyl-Sepharose column chromatographies. Its molecular weight was estimated to be 46 kDa on gel filtration and 44 kDa on SDS-polyacrylamide gel elctrophoresis. Its optimum pH and temperature for phytase activity were pH 6.5-8.5 and 40°C without 10 mM CaCl2 and pH 6.0-9.5 and 60°C with 10 mM CaCl2. About 50% of its original activity remained after incubation at 80°C or 10 min in the presence of 10 mM CaCl2. The enzyme activity was fairly stable from pH 6.5 to 10.0. The enzyme had an isoelectric point of 6.8. As for substrate specificity, it was very specific for sodium phytate and showed no activity on other phosphate esters. The K m value for sodium phytate was 50 M. Its activity was inhibited by EDTA and metal ions such as Ba2+, Cd2+, Co2+, Cr3+, Cu2+, Hg2+, and Mn2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号