首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid procedure for generating dozens of 125I-labeled peptide maps from a protein band excised from a single lane of a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel has been developed. Proteins, which can be rapidly purified by 2× SDS-PAGE separation, are electroblotted onto nitrocellulose paper (NCP) and located by aqueous naphthol blue-black staining. All subsequent steps of radioiodination, and enzyme or chemical cleavage, are carried out on the NCP making it possible to test a variety of cleavage reagents on the same protein sample. The resultant peptidic residues, which can be separated by thin-layer electrophoresis-thin-layer chromatography (2D TLE-TLC), SDS-PAGE, or HPLC, can be used in comparative studies or they can be recovered for further structural and immunological analyses.  相似文献   

2.
We have developed an approach that allows peptide mass mapping by matrix-assisted laser desorption ionization-mass spectrometry of proteins visualized on a nitrocellulose membrane by immunochemical detection. Proteins are separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), electroblotted onto a nitrocellulose membrane and after blocking with a nonprotein-containing polymer such as polyvinylpyrrolidone 40 (PVP-40) or Tween 20, the proteins are stained with fount India ink. After incubation with primary and, if required, secondary peroxidase-coupled antibodies, immunochemically reactive proteins can be visualized using conventional enhanced chemiluminescence detection and assigned to the India ink-stained membrane by simple superposition. The proteins of interest are excised, submitted to "on-membrane" cleavage and the peptides are analyzed by mass spectrometry. Protein-based blocking reagents normally used in standard immunodetection protocols, such as skimmed milk, can be employed. We have obtained high-quality mass spectra of bovine serum albumin (BSA) detected on an immunoblot with an estimated amount of 100 fmol applied onto the gel, indicating the sensitivity of the present method. In addition, the approach is demonstrated with two other commercially available proteins, a serum protein, the successful identification of a tyrosine phosphorylated protein from total rat liver homogenate and serine phosphorylated proteins from an EcR 293 nuclear extract separated by two-dimensional (2-D) SDS-PAGE.  相似文献   

3.
Some isolates of the temperature sensitive mutant tsD1 of complementation group D of vesicular stomatitis virus of New Jersey serotype have a nucleocapsid (N) protein which shows an increased electrophoretic mobility on sodium dodecyl sulfate--polyacrylamide gel electrophoresis (SDS-PAGE) when compared with wild type. Utilizing techniques involving specific chemical cleavage at tryptophan or methionine residues, as well as enzymatic cleavage with carboxypeptidases A and B, we have determined that residues near the carboxyterminus are responsible for the electrophoretic difference of the mutant protein. We have further shown that there are no differences in the tryptic peptides of the mutant compared with the wild type or a non-ts revertant in this region of the protein. We have identified a tryptic peptide located outside the relevant carboxyterminal region which is distinct in mutant and revertant. We conclude that the mutation producing the aberrant electrophoretic mobility of N protein of the tsD1 mutant is a missense point mutation located at least 40 amino acid residues from the carboxyterminus and which interacts with a more proximal carboxyregion so as to influence electrophoretic mobility on SDS-PAGE.  相似文献   

4.
A protein was isolated from membranes of the green sulfur bacterium Chlorobium tepidum. This protein was characterized by gel electrophoresis, gel filtration, analytical ultracentrifugation and amino acid sequencing. The molecular weight of the purified protein was shown to be 26 kDa by SDS-PAGE. HPLC gelfiltration, SDS-PAGE and analytical ultracentrifugation are consistent with the presence of a homogenous protein in the preparations. Amino acid analysis was obtained from the isolated protein after fragmentation with Lys-C, trypsin and cyanogen bromide. The cleavage pattern resulting from these treatments combined with Edman sequencing yield a sequence allowing the identification of an integral membrane agglutinin in Chl. tepidum.  相似文献   

5.
A convenient silver staining method for protein in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels is described. The method is previsible, sensitive, and mass spectrometry (MS) compatible. Two visible counter ion dyes, ethyl violet (EV) and zincon (ZC), were used in the first staining solution with a detection limit of 2 to 8 ng/band in approximately 1 h. The dye-stained gel can be further stained by silver staining, which is based on acidic silver staining employing ZC with sodium thiosulfate as silver ion sensitizers. Especially, ZC has silver ion reducing power by cleavage of the diazo bond of the dye during silver reduction. The second silver staining can be completed in approximately 1 h with a detection limit of 0.2 ng/band.  相似文献   

6.
An apurinic/apyrimidinic (AP) endonuclease (E.C.3.1.25.2) has been purified 1100 fold to apparent homogeneity from calf thymus by a series of ion exchange, gel filtration and hydrophobic interaction chromatographies. The purified AP endonuclease is a monomeric protein with an apparent molecular weight on SDS-PAGE of 37,000. On gel filtration the protein behaves as a protein of apparent molecular weight 40,000. DNA cleavage by this AP endonuclease is dependent on the presence of AP sites in the DNA. DNA cleavage requires the divalent cation Mg2+ and has a broad pH optimum of 7.5-9.0. Maximal rates of catalysis occur at NaCl or KCl concentrations of 25-50 mM. The amino acid composition and the amino-terminal amino acid sequence for this AP endonuclease are presented. Comparison of the properties of this AP endonuclease purified from calf thymus with the reported properties of the human AP endonuclease purified from HeLa cells or placenta indicate that the properties of such an AP endonuclease are highly conserved in these two mammalian species.  相似文献   

7.
The precursor of cholecystokinin (pro-CCK) was expressed and purified from media of stably transfected D.Mel-2 cell as an V5-His tagged fusion protein. Its identity was confirmed using SDS-PAGE, immunoblotting, gel filtration chromatography, HPLC, and Mass Spectroscopy. Two major forms of pro-CCK were found with a molecular weight of about 14.4 and 11.3 kDa. The smaller form represents the V5-His tagged pro-CCK after cleavage at a single arginine residue at CCK-58. This cleavage is probably being performed by endogenous proteases in these cells. Purification of the desired larger form of pro-CCK is possible using a nickel column with a recovery of about 20%, yielding 500 microg/L media. The purified protein is stable for several months and can be used for further functional studies of pro-CCK.  相似文献   

8.
In order to characterize the proteins on liver endothelial cells that bind hyaluronan (HYA), liver endothelial cells were surface-iodinated with 125I, solubilized by Triton X-100 and passed through a column containing HYA coupled to agarose. The column was washed and eluted with HYA-oligosaccharides. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the eluted material, followed by autoradiography, showed a major band with a molecular mass of 100 kDa, that upon reduction gave major bands of 20 and 35 kDa, and minor doublet bands at 60 and 80 kDa. Two-dimensional electrophoresis of liver endothelial cell membrane proteins revealed that the 100 kDa protein has a pI of 6.6-6.8. The protein was purified by preparative SDS-PAGE of liver endothelial cell membrane proteins. The 100 kDa protein was excised from the gel and used for immunization of rabbits. Antiserum from immunized rabbits specifically recognized only the 100 kDa protein on immunoblots of liver endothelial cell membrane proteins separated by SDS-PAGE. The binding of 3H-HYA to liver endothelial cells and liver endothelial cell membranes could be specifically inhibited by Fab-fragments of the antibodies. When we tried to isolate the receptor in large scale by affinity chromatography of proteins from purified liver endothelial cell membranes, the 100 kDa protein could often not be detected on immunoblots or by silver staining following SDS-PAGE of the eluted material. Instead, proteins with molecular masses of 55 and 15 kDa were detected, but the antibodies reacted specifically with these proteins. Thus the 100 kDa protein is apparently susceptible to cleavage into distinct subcomponents.  相似文献   

9.
Most of the 15 protein serotypes found in group B Neisseria meningitidis have distinct major outer membrane protein patterns when examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) by the Weber-Osborn system. Both serotypes 2 and 11 contain major outer membrane proteins with apparent molecular weights of 41,000 and 28,000 (41K and 28K). The 41K and 28K proteins were purified from the prototype strains of these two serotypes (M986 type 2 and M136 type 11) by preparative slab SDS-PAGE and were chemically characterized. No hexosamine was found in the purified 41K and 28K proteins. Although the two 41K proteins had similar amino acid compositions, their mobilities in Laemmli SDS-PAGE and their fragmentation patterns on SDS-PAGE after cyanogen bromide cleavage were different. The two 28K proteins differed in their amino acid composition, mobilities in Laemmli SDS-PAGE, and cyanogen bromide cleavage products. Peptide maps following chymotrypsin digestion of radioiodinated 41K and 28K proteins revealed distinct peptide maps for all four proteins. Comparison of the peptide maps of two 41K or two 28K proteins indicated that most of the unique peptides were hydrophilic, whereas most of the common peptides were hydrophobic. These results indicated that both of the 41K proteins and the 28K proteins from serotypes 2 and 11 were chemically different, although the proteins having the same molecular weights appeared to share common peptides.  相似文献   

10.
Three hydrolases from the crude venom of the Malayan pit viper (Akistrodon rhodostoma) can be differentiated. The first, which we designate ARH alpha, is the well-known fibrinogenolytic enzyme ancrod. The second, ARH beta, which has not been described previously, is identified by its electrophoretic mobility after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), by its ability to hydrolyze H-D-phenylalanyl-L-piperyl-L-arginyl-rho-nitroanilide, and by inhibition of its activity by diisopropyl phosphorofluoridate. The third, ARH gamma, also previously not described, has been purified by using gel permeation and ion-exchange chromatography and preparative PAGE. Chemical, electrophoretic, and hydrodynamic data indicate that it is a single-chain, nonglobular glycoprotein with a molecular weight of 25,600. ARH gamma catalyzes the degradation of several plasma vitamin K dependent coagulation factors, including factor IX, factor X, prothrombin, and protein C. The products are electrophoretically similar to factor IXa beta, factor Xa, thrombin, and activated protein C, respectively. However, these products contain little or no enzymatic activity. ARH gamma-degraded factor IX, factor X, prothrombin, and protein C can be subsequently activated by factor XIa, Russell's viper venom X coagulant protein, crude taipan snake venom, and thrombin, respectively. The N-terminal sequence of the peptides resulting from the ARH gamma digest of porcine factor IX shows that at least three bonds are hydrolyzed: (1) at position 152, seven residues from the Arg145-Ala146 factor XIa cleavage site; (2) at position 167 within the factor IX activation peptide; and (3) at position 177, three residues from the Arg180-Val181 factor XIa cleavage site. The degradation of factor IX by ARH gamma is not affected by several serine protease inhibitors. ARH gamma catalyzes the degradation of both the heavy and light chains of porcine factor VIII which results in the inability of thrombin to activate factor VIII. ARH gamma also catalyzes the degradation of porcine antithrombin III which abolishes its ability to inhibit thrombin. These findings may have relevance to studies of hemostatic derangements following envenomation by this snake. Additionally, several novel coagulation factor derivatives have been generated for structure-function studies.  相似文献   

11.
Precise in-gel quantification of total protein amount of bands or spots in gels is the basis of subsequent biochemical, molecular biological and immunological analyses. Though several methods have been designed to evaluate relative amounts of proteins, these methods are of limited reliability because (semi-) quantifications depend on the amount of protein migrating into the gel and different proteins may lead to different absorptions/intensities of stained bands or spots. In the present study, we described a method to quantify both, hydrophilic and hydrophobic proteins using in-gel digestion with proteinase K, subsequent extraction and acid hydrolysis followed by the use of the ninhydrin reaction. The protocol is accurate and compatible with mass spectrometric characterization of proteins. Reproducible in-gel protein quantification was performed from SDS-PAGE and IEF/SDS-PAGE gels using bovine serum albumin as a standard protein. Bacteriorhodopsin separated on SDS-PAGE gel was quantified in addition in order to show that the method is also suitable for quantification of hydrophobic protein. This protocol for reliable in-gel protein quantification, which not only provides “arbitrary units of optical density”, can also be completed in a minimum of 4 days or maximum 1 week depending on the type of electrophoresis with the disadvantage of being time consuming.  相似文献   

12.
The role of interleukin-8 (IL-8) and related CXC chemokines has been demonstrated in many human diseases. However, more profound studies, e.g., by blocking the effect of these inflammatory mediators, request animal models and hence the identification of all human counterparts for commonly used laboratory animals. In this study, we describe the identification of a novel neutrophil chemotactic protein (NCP) of the rabbit. Intact and NH(2)-terminally truncated NCP forms and IL-8 were isolated from LPS-stimulated rabbit alveolar macrophages and purified to homogeneity by a four-step purification procedure. Determination of the complete primary structure of NCP by mass spectrometry and NH(2)-terminal sequencing of natural protein revealed high structural homology with human epithelial cell-derived neutrophil attractant-78 (ENA-78) and granulocyte chemotactic protein-2 (GCP-2), two related ELR(+)CXC chemokines. Intact NCP(1-76) was found to be 10-fold less potent than truncated NCP(7, 8-76) at inducing neutrophil chemotaxis. NCP(7,8-76) was equally potent as intact rabbit IL-8 at chemoattracting human neutrophils and at inducing calcium fluxes in rabbit neutrophils, 1 ng/mL being the minimal effective concentration. However, like IL-8, NCP failed to induce monocyte or eosinophil migration at 300-fold higher concentrations. IL-8 desensitized the calcium increase induced by NCP and vice versa. Finally, intradermal injection of NCP induced a dose-dependent and significant infiltration of neutrophils in mice skin. It can be concluded that NCP is a novel rabbit CXC chemokine that is, like IL-8, implicated in animal models used to study various human disorders in which neutrophils play an important role.  相似文献   

13.
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) transfer method was used for purification and enrichment of the protein from crude sample. Coomassie bluc/ZnSO4 stained protein band(s) containing intact polyacrylamide gel were loaded on to another polyacrylamide gel either alone or as pooled gel bands. Two/three bands were combined together and arranged tightly over one another, sealed with stacking gel and ran in another gel, which was quite useful for enrichment and purification of a particular protein from a complex mixture. Recovery of protein by gel transfer method was found to be 70% in case of ZnSO4 staining, whereas around 30% recovery was possible, following Coomassie blue staining. The method described here for purification of protein(s) from a complex mixture, following gel transfer procedure could be useful for further characterization of the desired protein.  相似文献   

14.
In biological membranes many proteins are organized in complexes. The method of choice for the global analysis of the subunits of these complexes is two-dimensional blue native (2D BN)/SDS-PAGE. In the 1st dimension complexes are separated by BN-PAGE, and in the 2nd dimension their subunits are resolved by SDS-PAGE. In the currently available protocols the 1st dimension BN gel lanes get distorted during their transfer to the 2nd dimension separation gels. This leads to low reproducibility and high variation of 2D BN/SDS-gels, rendering them unsuitable for comparative analysis. We have developed a 2D BN/SDS-PAGE protocol where the 1st dimension BN gel is cast on a GelBond PAG film. Immobilization prevents distortion of BN gel lanes, which lowers variation and greatly improves reproducibility of 2D BN/SDS-gels. 2D BN/SDS-PAGE with an immobilized 1st dimension was used for the comparative analysis of the cytoplasmic membrane proteomes of Escherichia coli cells overexpressing a membrane protein and to create a 2D BN/SDS-PAGE reference map of the E. coli cytoplasmic membrane proteome with 143 identified proteins from 165 different protein spots.  相似文献   

15.
A haemagglutinating protein from the saline extracts of Kalanchoe crenata leaves, which agglutinate all human blood types, was purified to homogeneity by ion-exchange chromatography on a DEAE-Cellulose column followed by gel filtration on a Sephadex G-100 column. The purified protein showed one band, both in non-denaturing PAGE and SDS-PAGE. The M(r) that was determined by SDS-PAGE was 44,000 Da and that estimated from gel filtration was 47,000. Treatment of the haemagglutinating protein with 5 mM EDTA diminished the haemagglutinating activity to 50% of the original level. The addition of divalent cations, 10 mM Mg(2+), 10 mM Mn(2+), or 10mM Ba(2+), totally restored and enhanced the activity. The protein showed maximum activity over the 3-7 pH range and was heat-resistant. It was also a glycoprotein containing about 1.5% carbohydrate.  相似文献   

16.
An enzyme that plays an important role in the repair of oxidative DNA damage is the 3'-phosphodiesterase. This activity, which repairs damaged DNA 3'-termini,can be detected using several available biochemical assays. We present a method to detect 3'-phosphodiesterase activity of renatured proteins immobilized in polyacrylamide gels. The model substrate, labeled with [alpha-32P]dCTP, contains 3'-phosphoglycolate termini produced by bleomycin-catalyzed cleavage of the self-complementary alternating copolymer poly(dGdC). The DNA substrate is incorporated into the gel matrix during standard SDS-PAGE. Active 3'-phosphodiesterase enzymes are detected visibly by the loss of radioactivity at a position corresponding to the mobility of the enzyme during SDS-PAGE. Using this procedure, two Escherichia coli 3'-phosphodiesterases, exonuclease III and endonuclease IV, are readily detected in crude cell extracts or as homogeneous purified proteins. Extracts of mutant cells lack activity at the positions of exonuclease III and endonuclease IV but retain activity in the position of a much larger protein (Mr approximately 100 kDa). The identification of this novel 100 kDa E.coli 3'-phosphodiesterase demonstrates the potential value of the activity gel method described here.  相似文献   

17.
The chemically-coded affinity tag (CCAT) method combines standard electrophoresis protocols with MALDI-TOF-MS analysis to identify and quantify protein abundances in complex samples in one step. This method is designed to fit into the workflow of SDS-PAGE or two-dimensional electrophoresis (2-DE) only requiring basic proteome laboratory equipment. Prior to electrophoresis two protein samples are separately labelled with a heavy or a light version of the CCAT reagent via reduced cysteines in the proteins. Equal amounts are then combined and electrophoretically separated. Proteins can then be excised from the gel to obtain their peptide mass fingerprint by mass spectrometry. This fingerprint enabled not only identification, but also quantification by comparing relative peak intensities of CCAT-labelled peptides. In this article, we display how the CCAT method can be used to analyse two protein samples in one gel and that the peak intensities of labelled peptides reflect the abundance of a protein in it.  相似文献   

18.
A systematic strategy was developed for the proteomic analysis of wheat chloroplast protein complexes. First, comprehensive centrifugation methods were utilized for the exhaustive isolation of thylakoid, envelope, and stromal fractions. Second, 1% n-dodecyl-β-D-maltoside was selected from a series of detergents as the optimal detergent to dissolve protein complexes effectively from membranes. Then, blue native polyacrylamide gel electrophoresis (BN-PAGE) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were improved to separate and analyze the protein complexes. By this systematic strategy, envelopes, thylakoids, and stromata were enriched effectively from chloroplasts in the same process, and more than 18 complexes were obtained simultaneously by BN-PAGE. Finally, thylakoid protein complexes were further analyzed by BN/SDS-PAGE, and nine complex bands and 40 protein spots were observed on BN-PAGE and SDS-PAGE respectively. Our results indicate that this new strategy can be used efficiently to analyze the proteome of chloroplast protein complexes and can be applied conveniently to the analysis of other subcellular protein complexes.  相似文献   

19.
Two-dimensional gel electrophoresis (2DE) and SDS-PAGE are the two most useful methods in protein separation. Proteins separated by 2DE or SDS-PAGE are usually transferred to membranes using a variety of methods, such as electrophoretic transfer, heat-mediated transfer, or nonelectrophoretic transfer, for specific protein detection and/or analysis. In a recent study, Pettegrew et al.1 claim to reuse transfer buffer containing methanol for at least five times for transferring proteins from SDS-PAGE to polyvinylidene difluoride. They add 150–200 ml fresh transfer solution each time for extended use as a result of loss of transfer buffer. Finally, they test efficiency of each protein transfer by chemiluminescence detection. Here, we comment on this report, as we believe this method is not accurate and useful for protein analysis, and it can cause background binding as well as inaccurate protein analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号