首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ploidy levels were calculated for callus cultures of loblolly pine (Pinus taeda L.), based on nuclear DNA content measured by Feulgen cytophotometry. The nuclear DNA content of initial stem explants showed a predominant 2C condition with less 3C and 4C, in ratios approximating those expected from diploid cells as they replicate DNA in the mitotic cell cycle. Cells with higher ploidy were produced during callus initiation, as indicated by a sharp reduction in the 2C population and a concomitant increase in higher DNA levels up to 8C. A gradual decrease in the higher ploidy levels occurred in subsequent subculture intervals, so that by 18 weeks the diploid nuclear DNA distribution was again observed, with complete elimination of DNA levels greater than 4C. Established callus cultures derived from stem or embryo explants and cultured on three different nutrient media for 48–76 weeks also showed the diploid nuclear DNA distribution with no indication of polyploid cells.Abbreviations BAP benzylaminopurine - NAA -naphthaleneacetic acid - BL Brown and Lawrence's medium - BLG modified BL medium - LM Litvay's medium Paper No. 11952 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh NC 27695-7643, USA  相似文献   

2.

Background and aims

Freeze events can strongly influence many ecosystem processes. However, the effects of freeze events on litter production, litter quality, and decomposition are rarely documented.

Methods

In this study, litter fall was measured monthly for 2 years. Two litter decomposition experiments were also performed using freeze-damaged litter and non-damaged litter in a loblolly pine forest.

Results

The freeze event in November 2009 caused a pronounced pulse of needle litter fall. The freeze-damaged needle litter was shown to have higher N concentration and lower C/N ratio compared with the normal falling needle litter. This finding indicates that freeze damage significantly increased needle quality because of incomplete nutrient resorption. The decomposition of freeze-damaged needle litter was faster than that of normal falling yellow needle litter and slower than that of hand-picked green needle litter. The decomposition rate constant (k) was negatively correlated with the C/N ratio in the needle litter. Our results also showed that the different climatic conditions influence patterns of litter decomposition.

Conclusions

This study suggests that freeze events significantly alter litter quantity and quality, thus affecting litter decomposition rates in a loblolly pine forest in central China.  相似文献   

3.
A 2-year-old pine plantation was selected to receive treatments of fertilizers and herbicides to evaluate effects on Nantucket pine tip moth infestations and the tree growth parameters of height, diameter and volume increment. Nitrogen and phosphorus fertilizers, and hexazinone and sulfometuron methyl herbicides were used in creating six treatments: (i) control; (ii) phosphorus; (iii) nitrogen and phosphorus; (iv) phosphorus and herbicide; (v) nitrogen, phosphorus and herbicide; and (vi) herbicide. Treatments were applied in 1987 and 1988. In 1987, trees treated with nitrogen, phosphorus and herbicide had significantly greater height, diameter and volume growth than trees not receiving fertilizer treatments, but did not have significantly higher tip moth infestations than control trees. Treatments receiving phosphorus only had much lower tip moth infestation rates than other treatments except nitrogen and phosphorus. In 1988, tip moth infestations were uniformly low, with no differences in treatment effects observed.  相似文献   

4.
5.
磷是森林生态系统重要养分元素之一,是干旱半干旱地区植物生长的限制性因子。然而沙质草地转化为人工林生态系统后,林分的生长对沙地土壤磷素的变化及其影响机理还不清晰,为沙地合理经营和管理人工林带来了不确定性。以辽宁省章古台地区各生长阶段(幼龄林、中龄林、成熟林和过熟林阶段)的20块樟子松固沙林样地(在各生长阶段林分附近寻找1块天然草地作为对照样地)为研究对象,取样并测定样地各土层(0—10、10—20、20—40、40—60、60—80、80—100 cm)的土壤磷(全磷和速效磷)、土壤氮(全氮和速效氮)、土壤钾(全钾及速效钾)、土壤有机碳等含量以及土壤含水率、土壤pH值、土壤质地、土壤容重等因子值,并进行统计分析。结果表明:沙质草地营造樟子松人工林后,土壤全磷含量随林龄的增加而逐渐递增,成熟林时期达到最高,过熟林地全磷降低,且土壤全磷对土层深度不敏感。成熟林地的速效磷含量略高于幼林和中龄林;虽然与幼林、中龄林没有显著差异,但过熟林的土壤速效磷含量是所有林分中最低的。除了林分生长影响外,草地营造樟子松林后,土壤全磷的变化还受土壤容重和土壤速效氮含量的影响,而土壤速效磷的变化受土壤有机碳和pH...  相似文献   

6.
Full accounting of ecosystem carbon (C) pools and fluxes in coastal plain ecosystems remains less studied compared with upland systems, even though the C stocks in these systems may be up to an order of magnitude higher, making them a potentially important component in regional C cycle. Here, we report C pools and CO2 exchange rates during three hydrologically contrasting years (i.e. 2005–2007) in a coastal plain loblolly pine plantation in North Carolina, USA. The daily temperatures were similar among the study years and to the long‐term (1971–2000) average, whereas the amount and timing of precipitation differed significantly. Precipitation was the largest in 2005 (147 mm above normal), intermediate in 2006 (48 mm below) and lowest in 2007 (486 mm below normal). The forest was a strong C sink during all years, sequestering 361 ± 67 (2005), 835 ± 55 (2006) and 724 ± 55 (2007) g C m?2 yr?1 according to eddy covariance measurements of net ecosystem CO2 exchange (NEE). The interannual differences in NEE were traced to drought‐induced declines in canopy and whole tree hydraulic conductances, which declined with growing precipitation deficit and decreasing soil volumetric water content (VWC). In contrast, the interannual differences were small in gross ecosystem productivity (GEP) and ecosystem respiration (ER), both seemingly insensitive to drought. However, the drought sensitivity of GEP was masked by higher leaf area index and higher photosynthetically active radiation during the dry year. Normalizing GEP by these factors enhanced interannual differences, but there were no signs of suppressed GEP at low VWC during any given year. Although ER was very consistent across the 3 years, and not suppressed by low VWC, the total respiratory cost as a fraction of net primary production increased with annual precipitation and the contribution of heterotrophic respiration (Rh) was significantly higher during the wettest year, exceeding new litter inputs by 58%. Although the difference was smaller during the other 2 years (Rh : litterfall ratio was 1.05 in 2006 and 1.10 in 2007), the soils lost about 109 g C m?2 yr?1, outlining their potential vulnerability to decomposition, and pointing to potential management considerations to protect existing soil C stocks.  相似文献   

7.
主要管理措施对人工林土壤碳的影响   总被引:3,自引:0,他引:3  
人工林碳汇在全球碳循环及温室气体减排中发挥着重要作用。人工林是处于人为调控下的生态系统类型,经营管理措施是影响人工林土壤碳平衡的重要因素。通过科学合理的生态系统管理,增强人工林的土壤碳汇,对减缓气候变化具有十分重要的意义。本文综述了主要经营管理措施(造林树种、轮伐期、采伐、灌溉和施肥)对人工林土壤碳储量与碳通量影响的研究进展,结果表明:人工林经营管理措施可通过改变林地的温度、水分、养分和土壤结构,来影响土壤有机碳储量和土壤呼吸等碳循环过程。但目前人工林管理对土壤碳影响的研究还很不足,一些营林措施还未展开相关研究。未来应针对人工林管理措施对土壤碳的影响做更全面的定量研究。  相似文献   

8.
Summary Various laboratory indices of N and P availability in forest soils correlated poorly among themselves and with on-site ion exchange resin (IER) estimates in both unfertilized and N+P fertilized loblolly pine plantations. IER nutrient availability estimates had greatest within-site variability than laboratory indices. Net nitrification was minimal in laboratory incubation of the mineral soil despite high rates of ammonification. In contrast, IER NO3–N values were usually of the same magnitude as IER NH4–N values. In both fertilized and unfertilized stands, at least one N availability index was negatively correlated with at least one P index. Soil N and P availabilities were generally higher on fertilized plots than on unfertilized plots 3.5 years after fertilization, and IER estimates showed the greatest number of plots with increased levels. The greater ability of the IER method to distinguish between fertilized and unfertilized plots indicated the method was affected by on-site factors that the laboratory methods do not assess.  相似文献   

9.
Summary Seasonal gas exchange and canopy structure were compared among 9-year-old loblolly pine (Pinus taeda L.), pitch pine (Pinus rigida Mill.), and pitch x loblolly hybrids (Pinus rigida x taeda) growing in an F2 plantation located in Critz, Va., USA. Leaf net photosynthesis, conductance, internal CO2 concentration (ci), water use efficiency (WUE; photosynthesis/conductance), dark respiration and the ratio of net photosynthesis/respiration did not vary among or within the three taxa. Significant differences in volume production, crown length, total crown leaf surface area and the silhouette area of shade shoots among the taxa were observed. The loblolly-South Carolina source had greater volume and crown surface area than the pitch pine, and the hybrid taxa were intermediate between the two. Although the silhouette area ratio of shade foliage varied among taxa, it was not related to volume. A strong relationship between total leaf surface area and volume was observed. Leaf conductance, ci, WUE and leaf water potential were the physiological parameters significantly and positively correlated with volume. This study suggests that the amount of needle surface in the canopy is more important in early stand volume growth than the leaf carbon exchange rate and the degree of needle self-shading in the lower canopy.  相似文献   

10.
Water status of Pinus taeda L. callus supported on Murashige and Skoog (MS) liquid medium was characterized over an 8 week period using thermocouple psychrometry. Medium with 30 gl−1 sucrose was used to produce a high water potential (Ψw) of −0.4 MPa (H), and the same medium was used to create a moderate Ψw of −0.7 MPa (M) by the addition of 10% polyethylene glycol (PEG, w/v, MW=8000). Calli were produced from cotyledon explants on H medium for 2 weeks and then transferred to either M or H medium. Callus absorption of PEG accounted for 40% of the callus dry weight and less than 7% of the callus fresh weight. Callus dry weight (without the PEG fraction) on M medium was 40% of that observed on H medium. Fresh weight on M medium was only 15% of that observed on H medium. The Ψw of both H and M media remained constant throughout the culture period. On H medium, callus Ψw and osmotic potential (Ψs) both increased 0.05 MPa/week with the callus Ψw approaching that of the external medium. On M medium, callus Ψw and Ψs both decreased more than 0.1 MPa/week with the callus Ψw decreasing greatly below that of the external medium. The latter was attributed to a rapidly produced osmotic shock induced upon callus transfer and/or PEG which caused less callus hydration and resulted in reduced growth. Callus turgor potential (Ψp) was estimated to be +0.02 to +0.09 MPa and turgor was maintained as callus Ψw increased or decreased. After 8 weeks, cell volumes from callus on M medium were 50 to 60% less than on H medium, suggesting that reduced cell volumes were related to turgor maintenance.  相似文献   

11.
The effects of ultraviolet-B radiation on loblolly pine   总被引:11,自引:0,他引:11  
Summary Depletion of stratospheric ozone and the resulting increase in ultraviolet-B (UV-B) radiation may negatively impact the productivity of terrestrial ecosystems. This concern has led to a number of studies that report the influence of supplementing UV-B radiation on plant growth and development. However, only two of these field studies have included tree species and both were singleseason experiments. In this study, loblolly pine (Pinus taeda L.) from seven seed sources was grown under natural and supplemental levels of UV-B radiation. Irradiation treatments were continued for three seasons on plants from four of the seven groups and for 1 year only for three groups. The supplemental irradiances simulated those that would be anticipated with stratospheric ozone reductions of 16% and 25% over Beltsville, Md. The effects of UV-B radiation during the 1st year on plant growth varied among the seed sources. The growth of plants from two of the seven seed sources tested showed significant reductions following a single irradiation season and plants from one group tended to be larger under increased UV-B radiation. However, after 3 years of supplemental irradiation, plant biomass was reduced in all four groups by 12–20% at the highest simulated ozone depletion. These results suggest that the effects of UV-B radiation may accumulate in trees and that increased UV-B radiation could significantly reduce the growth of loblolly pine over its lifetime. However, they also point to a need for multiple season research in any analysis of potential consequences of global change on the long-term growth of trees.  相似文献   

12.
Elevated atmospheric carbon dioxide (CO2e) increases soil respiration rates in forest, grassland, agricultural and wetland systems as a result of increased growth, root biomass and enhanced biological activity of soil microorganisms. Less is known about how forest floor fluxes respond to the combined effects of elevated CO2 and nutrient amendments; until now no experiments have been in place with large forest trees to allow even preliminary investigations. We investigated changes in forest floor respiration (Sff) in a Pinus taeda L. plantation fumigated with CO2 by using free‐air CO2 enrichment (FACE) technology and given nutrient amendments. The prototype FACE apparatus (FACEp; 707 m2) was constructed in 1993, 10 years after planting, on a moderate fertility site in Duke Forest, North Carolina, USA, enriching the stand to 55 Pa (CO2e). A nearby ambient CO2 (CO2a) plot (117 m2) was designated at the inception of the study as a reference (Ref). Both FACEp and Ref plot were divided in half and urea fertilizer was applied to one half at an annual rate of 11.2 g N m?2 in the spring of 1998, 1999 and 2000. Forest floor respiration was monitored continuously for 220 days – March through November 2000 – by using two Automated Carbon Efflux Systems. Thirty locations (491 cm2 each) were sampled in both FACEp and Ref, about half in each fertility treatment. Forest floor respiration was strongly correlated with soil temperature at 5 cm. Rates of Sff were greater in CO2e relative to CO2a (an enhancement of ~178 g C m?2) during the measurement period. Application of fertilizer resulted in a statistically significant depression of respiration rates in both the CO2a and CO2e plots (a reduction of ~186 g C m?2). The results suggest that closed canopy forests on moderate fertility sites cycle back to the atmosphere more assimilated carbon (C) than similar forests on sites of high fertility. We recognize the limitations of this non‐replicated study, but its clear results offer strong testable hypotheses for future research in this important area.  相似文献   

13.
Tissue culture plantlets of loblolly pine ( Pinus taeda L.) were compared to seedlings to quantify growth and developmental differences. The two plant types were grown in containers in a greenhouse and sampled periodically for twenty weeks. Dry weights and nitrogen and phosphorus concentrations of the shoots and roots were determined every two weeks.
During the twenty weeks in the greenhouse, seedlings grew to a greater size than the plantlets, but the relative rates of growth were approximately equal. Plantlets had significantly lower concentrations of nitrogen and phosphorus per g of shoot dry weight. Seedlings were much more efficient at nutrient uptake per g of dry weight of root. Plantlets had thick, unbranched roots, which were inefficient at nitrogen and phosphorus uptake. Nutrient uptake based on an index of root surface area was equal in the plantlets and seedlings.
The main differences between plantlets and seedlings apparently were related to root system morphology rather than physiological processes. The uptake of nutrients showed the greatest difference between the plant types.  相似文献   

14.
Summary Shade treatments were applied to the terminal portions of branches in loblolly pine trees to test whether portions of branches were autonomous with respect to carbohydrates. The shade treatments reduced light by 50% and 72% compared with full sun conditions resulting in significant reductions in net photosynthesis. Branch growth (branch diameter and length, branch and needle biomass) decreased significantly within the shaded portion of the branch. Branch and needle morphology were also affected by shading. Lateral branches subtending terminal shoots were labelled with 14C 2 times during the growing season. No movement of 14C into the terminal portions of the branch was evident during the first growth flush. However, during the second flush of growth small but statistically significant amounts of 14C were imported into the terminal portion of the shaded branches from subtending laterals. It was concluded that loblolly pine shoots were usually autonomous with respect to carbohydrate supply, but that carbohydrate movement into the terminal shoot from subtending foliage could occur under conditions of very high stress.  相似文献   

15.
The mechanism of germination enhancement by cold stratification was examined in seeds of loblolly pine ( Pinus taeda L. ), Removal of the seed coat permitted elongation of radicles from unstratified embryos, but both rates of germination and radicle elongation were increased by stratification. Radicles of both stratified and unstratified embryos excised from the megagamethophyte elongated only when in contact with solid incubation media supplemented with sucrose. Stratification of embryos either in the presence or absence of the megagametophyte resulted in similar enhancement of radicle elongation. Elongation rates of radicles were increased after stratification independent of sucrose concentration, and changes in sucrose content in the megagamethophyte during stratification or incubations subsequent to stratification were insufficient to regulate radicle growth. Our results support the hypothesis that the embryos of pine seeds perceive the low temperature stimulus directly and this stimulus results in a growth potential increase in the embryonic axes. We propose that this growth potential increase enables the embryos to overcome the mechanical restraint of the seeds coats and to germinate.  相似文献   

16.

Background

Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations.

Methodology and Principal Findings

We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35–80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness.

Conclusion and Significance

Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with stand management strategies that retain or increase hardwood vegetation while simultaneously regenerating the conifer cover in commercial tree plantations.  相似文献   

17.
Characterization of EST-SSRs in loblolly pine and spruce   总被引:3,自引:0,他引:3  
In the first large study of conifer expressed sequence tag-simple sequence repeats (EST-SSRs), two large conifer EST databases were characterized for EST-SSRs. One database was from “interior spruce” (white and Engelmann spruce in Southern British Columbia) and Sitka spruce, while the other was from loblolly pine. We found 475 and 629 unique EST-SSRs in loblolly pine and spruce, respectively. 3′ ESTs contained 14% more SSRs than 5′ EST reads in loblolly pine and 41% more in spruce. Conifer EST-SSRs differed conspicuously from angiosperm EST-SSRs in several aspects. EST-SSRs were considerably less frequent in conifers (one EST-SSR every ∼50 kb) than in angiosperms (one EST-SSR every ∼20 kb). Dinucleotide repeats were the most abundant repeat class in conifers, while in angiosperms, trinucleotides were most common. Finally, the AT motif was the dominant motif recovered in both conifer species, whereas AG was the most common dinucleotide repeat in angiosperms. Also, as these EST-SSRs in conifers could be developed into useful genetic markers, our work demonstrates the value of large-scale EST sequencing projects for in-silico approaches for marker development.  相似文献   

18.
Natural and human‐made disasters such as floods and logging occur in and around rivers. Stream‐dwelling aquatic insects respond to these disturbances in various ways. Primary consumers among them rely greatly on algae and leaf litter from riparian vegetation as food. Therefore, once a disturbance such as a flood has occurred, insects may find it difficult to find food in a stream, and the aquatic insect assemblage can be impacted greatly as a result. Disturbances in riparian areas also increase fine sediment loads into streams, damaging habitat and altering the aquatic insect assemblage. Deforestation impacts not only terrestrial but also aquatic animals. In this review paper, aquatic insect assemblages are assessed according to alterations in land use in and around streams. Following this paper, it is expected that clarification of aquatic insect fauna and their life cycles will progress and that the distribution and habitat use of aquatic insects will be afforded greater attention in forest management.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号