首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro responses of Schwann cells (RT4-D6P2T, a schwannoma cell line derived from a chemically induced rat peripheral neurotumor) on various types of electrospun fibrous scaffolds of some commercially available biocompatible and biodegradable polymers, i.e., poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polycaprolactone (PCL), poly(l-lactic acid) (PLLA), and chitosan (CS), were reported in comparison with those of the cells on corresponding solution-cast film scaffolds as well as on a tissue-culture polystyrene plate (TCPS), used as the positive control. At 24 h after cell seeding, the viability of the attached cells on the various substrates could be ranked as follows: PCL film > TCPS > PCL fibrous > PLLA fibrous > PHBV film > CS fibrous approximately CS film approximately PLLA film > PHB film > PHBV fibrous > PHB fibrous. At day 3 of cell culture, the viability of the proliferated cells on the various substrates could be ranked as follows: TCPS > PHBV film > PLLA film > PCL film > PLLA fibrous > PHB film approximately PCL fibrous > CS fibrous > CS film > PHB fibrous > PHBV fibrous. At approximately 8 h after cell seeding, the cells on the flat surfaces of all of the film scaffolds and that of the PCL nanofibrous scaffold appeared in their characteristic spindle shape, while those on the surfaces of the PHB, PHBV, and PLLA macrofibrous scaffolds also appeared in their characteristic spindle shape, but with the cells being able to penetrate to the inner side of the scaffolds.  相似文献   

2.
The purpose of this study was to evaluate hybrid poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/chitosan nanofibrous mats as scaffolds for skin engineering. In vitro studies were carried out to test the potential of the scaffolds for fibroblasts adhesion, viability, and proliferation (L929 cell line). The in vivo performance was also studied in a full-thickness wound healing model. PHBV/chitosan 4:1 (w/w) exhibited a higher in vitro biocompatibility and a better ability for cell adhesion and growth, compared to PHBV/chitosan 2:3 (w/w). The in vivo assay also revealed the better performance of this scaffold, improving the wound healing process in rats.  相似文献   

3.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable polyester, was electrospun to form defect-free fibers with high surface-area-to-volume ratio for skin regeneration. Several parameters such as solvent ratio, polymer concentration, applied voltage, flow rate, and tip-to-target distance were optimized to achieve defect-free morphology. The average diameter of the PHBV fibers was 724 ± 91 nm. PHBV was also solvent-cast to form 2-D films, and its mechanical properties, porosity, and degradation rates were compared with PHBV fibers. Our results demonstrate that PHBV fibers exhibited higher porosity, increased ductility, and faster degradation rate when compared with PHBV 2-D films (p < 0.05). In vitro studies with PHBV fibers and 2-D films were carried out to evaluate the adhesion, viability, proliferation, and gene expression of human skin fibroblasts. Cells adhered and proliferated on both PHBV fibers and 2-D films. However, the proliferation of cells on the surface of PHBV fibers was comparable to tissue culture polystyrene (TCPS, control) (p > 0.05). The gene expression of collagen I and elastin was significantly up-regulated when compared with TCPS control, whereas collagen III was down-regulated on PHBV fibers and 2-D film after 14 days in culture. The less ductile PHBV 2-D films showed higher levels of elastin expression. Furthermore, the PHBV fibers in the presence and absence of an angiogenesis factor (R-Spondin 1) were evaluated for their wound healing capacity in a rat model. The wound contracture in R-Spondin-1-loaded PHBV fibers was found to be significantly higher when compared with PHBV fibers alone after 7 days (p < 0.05). Furthermore, the presence of fibers promoted an increase in collagen and aided re-epithelialization. Thus our results demonstrate that the topography and mechanical and chemical stimuli have a pronounced influence on the cell proliferation, gene expression, and wound healing.  相似文献   

4.
Electrospun (e-spun) fiber mats of polycaprolactone (PCL; Mn = 80 000 g mol-1) with or without the presence of hydroxyapatite (HAp) nanoparticles (at 1% w/v based on the volume of the PCL solution) were successfully fabricated. The potential for use of these e-spun fiber mats as bone scaffolds was assessed by mouse calvaria-derived pre-osteoblastic cells, MC3T3-E1, in terms of attachment, proliferation, differentiation, and mineralization. Despite the lower number of cells attached at early time points, both the fibrous scaffolds supported the proliferation of MC3T3-E1 at similar levels to tissue-culture polystyrene plate (TCPS), with the cells growing on the PCL/HAp fiber mat (i.e., PCL/HAp-FS) showing the greatest proliferation rate on day 3 after the initial attachment period of 16 h. Alkaline phosphatase (ALP) activity of the cells grown on TCPS was the greatest on day 3 after cell culturing, while that of the cells grown on PCL/HAp-FS reached a maximum on day 5. On the other hand, the ALP activity of the cells grown on the neat PCL fiber mat (i.e., PCL-FS) was the lowest at any given time point. MC3T3-E1 cultured on the surface of PCL/HAp-FS expressed the greatest amount of osteocalcin (OC) gene on day 14 after cell culturing and OC protein on day 21 after cell culturing, respectively, when compared with those cultured on the surfaces of PCL-FS and TCPS. This corresponded to the greatest extent of mineralization for the cells grown on the surface of PCL/HAp-FS on day 21, followed by that for the cells grown on PCL-FS and TCPS, respectively.  相似文献   

5.
There have been strong demands for nanofibrous scaffolds fabricated by electrospinning for various fields due to their various advantages. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibre mats were prepared. The effects of processing variables as well as the inclusion of poly(ethylene glycol) (PEG) on the morphologies of generated fibres were investigated using Fourier-transform infrared spectroscopy and scanning electron microscopy. The average fibrous diameter was monitored in the range 400–3000 nm relying on the total content of PEG. The fluorescence cell imaging of electrospun mats was also explored. The results of cell viability demonstrated that skin fibroblast BJ-1 cells showed different adhesions and growth rates for the three kinds of PHBV fibres. Electrospun PHBV mats with low amount of PEG offer a high-quality medium for cell growth. Therefore, those mats exhibited high potential for soft tissue engineering, in particular wound healing.  相似文献   

6.
Tissue engineering techniques using a combination of polymeric scaffolds and cells represent a promising approach for nerve regeneration. We fabricated electrospun scaffolds by blending of Poly (3-hydroxybutyrate) (PHB) and Poly (3-hydroxy butyrate-co-3- hydroxyvalerate) (PHBV) in different compositions in order to investigate their potential for the regeneration of the myelinic membrane. The thermal properties of the nanofibrous blends was analyzed by differential scanning calorimetry (DSC), which indicated that the melting and glass temperatures, and crystallization degree of the blends decreased as the PHBV weight ratio increased. Raman spectroscopy also revealed that the full width at half height of the band centered at 1725 cm−1 can be used to estimate the crystalline degree of the electrospun meshes. Random and aligned nanofibrous scaffolds were also fabricated by electrospinning of PHB and PHBV with or without type I collagen. The influence of blend composition, fiber alignment and collagen incorporation on Schwann cell (SCs) organization and function was investigated. SCs attached and proliferated over all scaffolds formulations up to 14 days. SCs grown on aligned PHB/PHBV/collagen fibers exhibited a bipolar morphology that oriented along the fiber direction, while SCs grown on the randomly oriented fibers had a multipolar morphology. Incorporation of collagen within nanofibers increased SCs proliferation on day 14, GDNF gene expression on day 7 and NGF secretion on day 6. The results of this study demonstrate that aligned PHB/PHBV electrospun nanofibers could find potential use as scaffolds for nerve tissue engineering applications and that the presence of type I collagen in the nanofibers improves cell differentiation.  相似文献   

7.
Poly-3-hydroxybutyrate (PHB) and poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) was produced using a co-culture of activated sludge. When butyric acid was used as sole carbon source, PHB was produced. When valeric acid was added to the medium, PHBV was produced. The 3-hydroxyvalerate (3HV) mole fraction in the PHBV reached a maximum of 54% when valeric acid was used as sole carbon source. When the 3HV units in the co-polymer increased from 0.0 to 54.0 mol%, the melting temperature ( T m ) decreased from 178 to 99°C. The composition, and hence the mechanical properties, of the co-polymer produced by activated sludge can be controlled by adjusting the medium composition.  相似文献   

8.
在摇瓶条件下,对真养产碱杆菌(Alcaligeneseutrophus)的3羟基丁酸与3羟基戊酸共聚物(PHBV)发酵过程中HV组分的前体物质———丙酸的加入时间和加入量进行了研究,结果表明,PHBV中HV组分含量与丙酸的加入时间和加入量有密切的关系,丙酸的最佳加入时间为菌体生长阶段结束后的多聚物合成初期;尽管高浓度丙酸下可获得较高的HV组分含量,但会明显抑制菌体的生长和产物的合成。通过对2L小罐中PHBV合成阶段流加不同糖/酸比混合液所得的发酵结果的比较,并在综合考虑PHBV浓度、HV组分含量、生产强度和生产成本等基础上,提出了在PHBV合成期流加液的糖/酸比应随菌体对丙酸利用能力的下降而不断增加的流加策略,在此条件下,细胞干重、PHBV浓度和PHBV含量和HV摩尔分率分别达到521g/L、408g/L、783%和162mol%,HV组分对丙酸的产率系数为05g/g,PHBV的生产强度达到074g/(L/h)。  相似文献   

9.
Cocell polymers can be the best implants for replacing bone defects in patients. The pluripotent stem cells produced from the patient and the nanofibrous polymeric scaffold that can be completely degraded in the body and its produced monomers could be also usable are the best options for this implant. In this study, electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers were fabricated and characterized and then osteogenic differentiation of the human-induced pluripotent stem cells (iPSCs) was investigated while cultured on PHBV scaffold. MTT results showed that cultured iPSCs on PHBV proliferation were increased compared to those cultured on tissue culture polystyrene (TCPS) as the control. Alkaline phosphatase (ALP) activity and calcium content were also significantly increased in iPSCs cultured on PHBV compared to the cultured on TCPS under osteogenic medium. Gene expression evaluation demonstrated that Runx2, collagen type I, ALP, osteonectin, and osteocalcin were upregulated in iPSCs cultured on PHBV scaffold in comparison with those cultured on TCPS for 2 weeks. Western blot analysis have shown that osteocalcin and osteopontin expression as two major osteogenic markers were increased in iPSCs cultured on PHBV scaffold. According to the results, nanofiber-based PHBV has a promising potential to increase osteogenic differentiation of the stem cells and iPSCs-PHBV as a cell-co-polymer construct demonstrated that has a great efficiency for use as a bone tissue engineered bioimplant.  相似文献   

10.
One of the most important challenges in tissue engineering research is the development of biomimetic materials. In this present study, we have investigated the effect of the titanium dioxide (TiO2) nanoparticles on the properties of electrospun mats of poly (hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), to be used as scaffold. The morphology of electrospun fibers was observed by scanning electron microscopy (SEM). Both pure PHBV and nanocomposites fibers were smooth and uniform. However, there was an increase in fiber diameter with the increase of TiO2 concentration. Thermal properties of PHBV and nanocomposite mats were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC analysis showed that the crystallization temperature for PHBV shifts to higher temperature in the presence of the nanoparticles, indicating that TiO2 nanoparticles change the process of crystallization of PHBV due to heterogeneous nucleation effect. TGA showed that in the presence of the nanoparticles, the curves are shifted to lower temperatures indicating a decreasing in thermal stability of nanocomposites compared to pure PHBV. To produce scaffolds for tissue engineering, it is important to evaluate the biocompatibility of the material. Cytotoxicity assay showed that TiO2 nanoparticles were not cytotoxic for cells at the concentration used to synthesize the mats. The proliferation of cells on the mats was evaluated by the MTT assay. Results showed that the nanocomposite samples increased cell proliferation compared to the pure PHBV. These results indicate that continuous electrospun fibrous scaffolds may be a good substrate for tissue regeneration.  相似文献   

11.
Glial cells in the peripheral nervous system, such as Schwann cells, respond to nucleotides, which play an important role in axonal regeneration and myelination. Metabotropic P2Y receptor agonists are promising therapeutic molecules for peripheral neuropathies. Nevertheless, the proteomic mechanisms involved in nucleotide action on Schwann cells remain unknown. Here, we studied intracellular protein changes in RT4-D6P2T Schwann cells after treatment with nucleotides and Nucleo CMP Forte (CMPF), a nucleotide-based drug. After treatment with CMPF, 2-D DIGE revealed 11 differential gel spots, which were all upregulated. Among these, six different proteins were identified by MS. Some of these proteins are involved in actin remodelling (actin-related protein, Arp3), membrane vesicle transport (Rab GDP dissociation inhibitor β, Rab GDI), and the endoplasmic reticulum stress response (protein disulfide isomerase A3, PDI), which are hallmarks of a possible P2Y receptor signalling pathway. Expression of P2Y receptors in RT4-D6P2T cells was demonstrated by RT-PCR and a transient elevation of intracellular calcium measured in response to UTP. Actin reorganisation was visualized after UTP treatment using phalloidin-FITC staining and was blocked by the P2Y antagonist suramin, which also inhibited Arp3, Rab GDI, and PDI protein upregulation. Our data indicate that extracellular UTP interacts with Schwann P2Y receptors and activates molecular machinery that induces changes in the glial cell cytoskeleton.  相似文献   

12.
Zhou Y  Yang D  Chen X  Xu Q  Lu F  Nie J 《Biomacromolecules》2008,9(1):349-354
Biocompatible carboxyethyl chitosan/poly(vinyl alcohol) (CECS/PVA) nanofibers were successfully prepared by electrospinning of aqueous CECS/PVA solution. The composite nanofibrous membranes were subjected to detailed analysis by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). SEM images showed that the morphology and diameter of the nanofibers were mainly affected by the weight ratio of CECS/PVA. XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CECS and PVA. The crystalline microstructure of the electrospun fibers was not well developed. The potential use of the CECS/PVA electrospun fiber mats as scaffolding materials for skin regeneration was evaluated in vitro using mouse fibroblasts (L929) as reference cell lines. Indirect cytotoxicity assessment of the fiber mats indicated that the CECS/PVA electrospun mat was nontoxic to the L929 cell. Cell culture results showed that fibrous mats were good in promoting the cell attachment and proliferation. This novel electrospun matrix would be used as potential wound dressing for skin regeneration.  相似文献   

13.
A new thermophilic microorganism capable of degrading poly(D-3-hydroxybutyrate) (PHB) was isolated from soil. A phylogenetic analysis based on 16S rDNA sequences indicated that the new isolate belongs to genus Streptomyces. PHB film and powder were completely degraded after 6 and 3 d cultivation, respectively at 50 degrees C. Scanning micrographs showed adherence of the microbial cells to the entire film surface, indicating that biodegradation occurs by colonization of the PHB surface. The film was degraded both by microbial attack and by the action of an extracellular enzyme secreted by the microorganism. The strain can also degrade poly(ethylene succinate), poly(ester carbonate), polycaprolactone and poly(butylene succinate), but to a lesser extent.  相似文献   

14.

The extreme haloarchaea Haloferax mediterranei accumulates poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) without the need for specific precursors. In this study, growth kinetics and PHBV synthesis were characterised under nitrogen-excess and nitrogen-limiting conditions in ammonium and, for the first time, nitrate. With excess nitrogen, ammonium and nitrate cultures generated 10.7 g/L biomass containing 4.6 wt% PHBV and 5.6 g/L biomass with 9.3 wt% PHBV, respectively. Copolymer composition varied with the nitrogen source used: PHBV from ammonium cultures had 16.9 mol% 3-hydroxyvalerate (HV), while PHBV from nitrate cultures contained 12.5 mol% HV. Nitrogen limitation was achieved with carbon-to-nitrogen (C/N) molar ratios of 25 or higher. Nitrogen limitation reduced biomass generation and polymer concentration, but polymer accumulation increased to 6.6 and 9.4% for ammonium and nitrate, respectively, with C/N 42. PHBV composition was also affected and cultures with lower C/N ratios produced richer HV polymers. Copolymer formation was not a uniform process: HV was only detected after a minimum accumulation of 0.45 g/L PHB and lasted for a maximum of 48 h. The understanding of copolymer synthesis and the influence of culture conditions such as the nitrogen source will help in designing novel strategies for the production of PHBV with more regular structure and material properties.

  相似文献   

15.
Trotsenko  Yu. A.  Belova  L. L. 《Microbiology》2000,69(6):635-645
Recent data on the biosynthesis of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and its regulation in bacteria are reviewed, with special emphasis on the properties and regulation of the relevant enzymes and their genes. Some conditions promoting the synthesis of PHB and PHBV by natural, mutant, and recombinant producers are considered.  相似文献   

16.
This research is aimed to develop cationic nanofibrous mats with improved cellular adhesion profiles and stability of three-dimensional fibrous structure as potential scaffolds for skin tissue engineering. Firstly, amino-remained chitosan-graft-poly (?-caprolactone) (CS-g-PCL) was synthesized with a facile one-step manner by grafting ?-caprolactone oligomers onto the hydroxyl groups of CS via ring-opening polymerization by using methanesulfonic acid as solvent and catalyst. And then, CS-g-PCL/PCL nanofibrous mats were obtained by electrospinning of CS-g-PCL/PCL mixed solution. Scanning electron microscopy (SEM) images showed that the morphologies and diameters of the nanofibers were mainly affected by the weight ratio of CS-g-PCL to PCL. The enrichment of amino groups on the nanofiber surface was confirmed by X-ray photoelectron spectroscopy (XPS). With the increase of CS-g-PCL in CS-g-PCL/PCL nanofiber, the content of amino groups on the nanofiber surface increased, which resulted in the increase of zeta-potential of nanofibers. Studies on cell-scaffold interaction were carried out by culturing mouse fibroblast cells (L929) on CS-g-PCL/PCL nanofibrous mats with various contents of CS-g-PCL by assessing the growth, proliferation and morphologies of cells. The results of MTS assay and SEM observation showed that CS-g-PCL/PCL (2/8) mats with a moderate surface zeta-potential (ζ=3mV) were the best in promoting the cell attachment and proliferation. Toluidine blue staining further confirmed that L929 cells grew well and exhibited a normal morphology on the CS-g-PCL/PCL (2/8) mats. These results suggested the potential utilization of CS-g-PCL/PCL (2/8) nanofibrous mats for skin tissue engineering.  相似文献   

17.
Sun QS  Dong J  Lin ZX  Yang B  Wang JY 《Biopolymers》2005,78(5):268-274
Cytocompatibility of particle zein (Pzein) and film zein (Fzein) was evaluated and compared with polyhydroxybutyrate (PHB), its copolymer poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), polylactic acid (PLA), and collagen, using HL-7702 cells, in terms of cell attachment rate within 3 h, and cell viabilities at 3 and 6 days determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. The zein degradation test was carried out using collagenase and trypsin, and the degradation product was added to the culture medium at different concentrations in order to examine the concentration-dependent cytotoxic effect. RESULT: The adhesion rate of the HL-7702 cells on both Pzein and Fzein was higher than that on collagen film. Cell viabilities were higher on both Pzein and Fzein than on films of PLA, PHB, PHBV, and collagen from fish skin. Zein can be degraded by both trypsin and collagenase, and the degradation product can enhance cell viability within a certain range of concentrations.  相似文献   

18.
In order to enhance 3-hydroxyvalerate (3HV) fraction in copolyesters of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the propionate permease gene prpP or the propionyl-CoA synthase gene prpE was transformed into Escherichia coli XL10-Gold with co-expression of PHB operon (phaCAB) from Ralstonia eutropha. The recombinant E. coli strains were cultured on mixed carbon sources composed of glucose and propionic acid to promote PHBV accumulation. It was shown that the over-expression of prpE suppressed 3HV incorporation into PHBV copolymer, which led to reduced 3HV fraction. In contrast, the over-expression of prpP improved the 3HV content from 5.6 to 14.3 mol%, followed by an increased PHBV accumulation up to 62 wt%. The results showed that the expression of prpP stimulated the uptake and utilization of propionic acid and increased the 3HV fraction in PHBV. However, the over-expression of prpE in E. coli did not affect 3HV content in PHBV. Surprisingly, co-expression of prpE and prpP did not lead to any 3HV formation. This study showed the possibility to change the PHBV composition without overdose of propionic acid which is expensive and toxic for the cells.  相似文献   

19.
Reaction processes of poly[(R)-3-hydroxybutyric acid] (P(3HB)) with two types of poly(hydroxybutyric acid) (PHB) depolymerases secreted from Ralstonia pickettii T1 and Penicillium funiculosum were characterized by means of atomic force microscopy (AFM) and quartz crystal microbalance (QCM). The PHB depolymerase from R. pickettii T1 consists of catalytic, linker, and substrate-binding domains, whereas the one from P. funiculosum lacks a substrate-binding domain. We succeeded in observing the adsorption of single molecules of the PHB depolymerase from R. pickettii T1 onto P(3HB) single crystals and the degradation of the single crystals in a phosphate buffer solution at 37 degrees C by real-time AFM. On the contrary, the enzyme molecule from P. funiculosum was hardly observed at the surface of P(3HB) single crystals by real-time AFM, even though the enzymatic degradation of the single crystals was surely progressed. On the basis of the AFM observations in air of the P(3HB) single crystals after the enzymatic treatments, however, not only the PHB depolymerase from R. pickettii T1 but also that from P. funiculosum adsorbed onto the surface of P(3HB) crystals, and both concentrations of the enzymes on the surface were nearly identical. This means both enzymes were adsorbed onto the surface of P(3HB) single crystals. Moreover, QCM measurements clarified quantitatively the differences in detachment behavior between two types of PHB depolymerases, namely the enzyme from R. pickettii T1 was hardly detached but the enzyme from P. funiculosum was released easily from the surface of P(3HB) crystals under an aqueous condition.  相似文献   

20.
The aim of this study was to evaluate and to compare the long-term kinetics curves of biodegradation of poly(3-hydroxybutyrate) (PHB), its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and a PHB/polylactic acid composite. The total weight loss and the change of average viscosity molecular weight were used as the parameters reflecting the biodegradation degree. The rate of biodegradation was analyzed in vitro in the presence of lipase and in vivo after film implantation in animal tissues. The morphology of the PHB film surface was studied by the atomic force microscopy technique. It was shown that PHB biodegradation involves both polymer hydrolysis and its enzymatic biodegradation. The results obtained in this study can be used for the development of various PHB-based medical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号