首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solubility of plasma proteins in the presence of polyethylene glycol   总被引:1,自引:0,他引:1  
The solubility of plasma proteins was studied at various pH as a function of polyethylene glycol concentration. Computer analysis of precipitation curves permitted equations to be derived. The equations describe the relationship between protein solubility and polyethylene glycol concentration. The analysis of the equations furnished further data for the validity of the displacement theory.  相似文献   

2.
The solubility of O2 in polyethylene glycol 4000 and 6000 solutions of varying concentrations was determined iodimetrically (titrimetrically) and electrochemically using a rotating glassy carbon electrode and a PAR Model 174 Polarograph. The titrimetric determination resulted in the formation of an unexpected precipitate at 2% (w/v) polyethylene glycol corresponding to the approximate critical micelle concentration of the two polyethylene glycol homologs. Beyond 5% polyethylene glycol, O2 concentration was inversely proportional to polyethylene glycol concentration, and was higher in polyethylene glycol 4000 solutions than in polyethylene glycol 6000. The electrochemical data are a direct measure of O2 transport to the electrode surface, rather than O2 activity or concentration. Results indicate that even at relatively high H2O potentials, the transport of O2 to the root surface might be insufficient to meet the plant's respiratory requirements.  相似文献   

3.
The solubility of aqueous solutions of lysozyme in the presence of polyethylene glycol and various alkaline salts was studied experimentally. The protein-electrolyte mixture was titrated with polyethylene glycol, and when precipitation of the protein occurred, a strong increase of the absorbance at 340 nm was observed. The solubility data were obtained as a function of experimental variables such as protein and electrolyte concentrations, electrolyte type, degree of polymerization of polyethylene glycol, and pH of the solution; the last defines the net charge of the lysozyme. The results indicate that the solubility of lysozyme decreases with the addition of polyethylene glycol; the solubility is lower for a polyethylene glycol with a higher degree of polymerization. Further, the logarithm of the protein solubility is a linear function of the polyethylene glycol concentration. The process is reversible and the protein remains in its native form. An increase of the electrolyte (NaCl) concentration decreases the solubility of lysozyme in the presence and absence of polyethylene glycol. The effect can be explained by the screening of the charged amino residues of the protein. The solubility experiments were performed at two different pH values (pH = 4.0 and 6.0), where the lysozyme net charge was +11 and +8, respectively. Ion-specific effects were systematically investigated. Anions such as Br, Cl, F, and (all in combination with Na+), when acting as counterions to a protein with positive net charge, exhibit a strong effect on the lysozyme solubility. The differences in protein solubility for chloride solutions with different cations Cs+, K+, and Na+ (coions) were much smaller. The results at pH = 4.0 show that anions decrease the lysozyme solubility in the order (the inverse Hofmeister series), whereas cations follow the direct Hofmeister series (Cs+ < K+ < Na+) in this situation.  相似文献   

4.
Polyethylene glycol solutions (10% w/v) were used to detect the effect of mono- and divalent cations on some properties of thyroglobulin. It is shown that in presence of 10% w/v polyethylene glycol in 0.01 M Tris-HCl, pH 7.5, calcium (less than 0.05 M) modifies the solubility, the sedimentation rate, and the Stokes' radius of thyroglobulin, while monovalent cations up to 0.6 M do not effect any of these properties. These findings can be explained by an increase in molecular compactness of thyroglobulin. Furthermore, it was shown that a synthetic polymer, polyethylene glycol, could be used to detect conformational changes.  相似文献   

5.
Polymethoxyflavones (PMF) isolated from citrus peel have potent anti-cancer activity, however their utilization as functional ingredients in foods is currently limited because of their high melting point and poor water-solubility. The influence of oil type and concentration, hydrophilic polymer addition, and simulated intestinal conditions on PMF (5-hydroxytangeretin) solubility in solutions and nanoemulsions was examined. The saturation concentration of PMF in water was relatively low (0.93???M), but could be increased appreciably by adding certain hydrophilic polymers: polyethylene glycol (PEG) and ??-cyclodextrin (CD) were ineffective at increasing solubility, but poly(vinyl alcohol) (PVA) and hydroxypropyl methylcellulose (HPMC) greatly enhanced solubility (e.g., > 6???M for 0.5?% polymer). PMF was more soluble in medium chain triglycerides (MCT, 6.1?mM) than long chain triglycerides (LCT, 4.2?mM). The encapsulation efficiency of PMF in oil-in-water nanoemulsions was higher when MCT was used as the oil phase rather than LCT, and could be increased by increasing the oil droplet content. The solubility of PMF in simulated small intestinal fluids was increased by solubilization in bile micelles and mixed micelles formed during lipid digestion. These results have important implications for the development of functional foods fortified with bioactive hydrophobic components aimed at improving human health and wellness.  相似文献   

6.
In the present study, the use of aqueous polymer two-phase systems for separation of pathogenic bacteria from a complex food sample was investigated. Three different two-phase systems, a polyethylene glycol 3350/dextran T 500, a methoxy polyethylene glycol 5000/dextran T 500 and a polyethylene glycol 3350/hydroxypropyl starch system, were compared at pH 3 and pH 6 for their capacity to separate the pathogenic bacteria Listeria monocytogenes and Salmonella berta from a Cumberland sausage. In all three phase systems, the food particles partitioned to the lower phase. Best performance was obtained by the polymer combinations, polyethylene glycol 3350/dextran T 500 and polyethylene glycol 3350/hydroxypropyl starch. In these systems, Salmonella berta partitioned to the hydrophobic upper phase both at pH 3 and pH 6 with an average partitioning ratio of 80% and a recovery of 56%. Listeria monocytogenes partitioned to the upper phase at pH 3 only with an average partitioning ratio of 72% and a recovery of 45%. This method may become a valuable tool for separation of bacteria from complex food matrices.  相似文献   

7.
C D Tormanen 《Cryobiology》1992,29(4):511-518
Polyethylene glycol is a water-soluble polymer which is widely used in the pharmaceutical, cosmetic, and chemical industries. In this study, it is shown that polyethylene glycol is an effective cryoprotectant of rat kidney transamidinase purified from both the mitochondria and cytosol. Much of the activity is lost when the purified enzyme is frozen and thawed in sodium-potassium phosphate buffer in the absence of cryoprotectants. Polyethylene glycols with molecular weights of 4000 to 10,000 were effective cryoprotectants. However, polyethylene glycols with a molecular weight of 1000 or lower inhibited the purified enzyme. A concentration of only 0.01% polyethylene glycol 4000, 8000, or 10,000 was required for complete cryoprotection. In addition to polyethylene glycol, 0.5 mM ethylenediaminetetraacetic acid was required in the phosphate buffer for complete cryoprotection. The stabilization of purified transamidinase by polyethylene glycol will facilitate characterization experiments designed to compare the properties of the mitochondrial and cytosolic isozymes.  相似文献   

8.
Soluplus® is a novel amphiphilic polymer that has been shown to enhance the solubility and drug dissolution rate of poorly soluble drugs. However, there still is a lack of information regarding the physical mechanical properties of Soluplus® with addition of the plasticizers. This study characterized the mechanical properties of Soluplus® with four different plasticizers. The plasticizers selected were polyethylene glycol 6, triethyl citrate, propylene glycol, and glycerin; they were studied at three different levels (15%, 20%, and 25% w/w). The effects of these plasticizers on the glass transition temperature, tensile strength, percent elongation, and Young’s modulus of free films made from Soluplus® were measured and the toughness and ratio of tensile strength to Young’s modulus were calculated. These results showed these four plasticizers are capable to plasticizing Soluplus® as indicated by the glass transition temperature lowering, tensile strength, and Young’s modulus while increasing the percent elongation and film toughness. Among the plasticizers tested, polyethylene glycol 6 showed greatest changed in the mechanical properties studied.  相似文献   

9.
Precipitating titers and immunochemical titers obtained in a wide range of antigen-to-antibody concentration ratios by the two-cross immunodiffusion technique are compared with the corresponding laser light scatter precipitin curves. The two-cross immunodiffusion technique has also been applied to investigate whether polyethylene glycol of molecular mass 6000 and dextrans of molecular masses from 10,000 to 2,000,000 enhance the immunoprecipitation processes of the system human serum IgG-rabbit immune serum at pH 5.5 and 8.1 at 20 degrees C. It was found that the significant increase of precipitating titers of both precipitating components in the presence of polyethylene glycol is a consequence of a strong decrease of solubility of the primary antigen-antibody complex. The decrease of solubility does not affect the immunochemical titer of the immune serum, indicating stoichiometrical invariance of the precipitate at the equivalence. The apparent strong decrease of diffusion coefficients of both antigen and antibody in 20- and 40-g/liter polyethylene glycol solution is attributed to increase of viscosity of the solutions and to a partial self-association of protein molecules due to steric exclusion. In 40-g/liter polyethylene glycol solutions at pH 5.5 every fourth molecular entity of antigen and every third molecular entity of antibody are present in the form of a two-molecular self-associate, whereas in 20-g/liter polyethylene glycol solutions only 1% of antigen molecules and 8% of antibody molecules are associated. With the increase of pH to 8.1 the self-association of protein molecules is strongly further enhanced. Dextrans in 20-g/liter solutions, without regard to their relative molecular masses, do not influence precipitating titers and solubility of the antigen-antibody system at equivalence and do not enhance self-association of protein molecules. The strong decrease of diffusion coefficients of immunoglobulin G antigen and antibodies in dextran solutions is solely attributed to the increase of viscosity of the dextran solutions; hence there was no evidence of interaction of dextrans with serum IgG proteins.  相似文献   

10.
The introduction of a polyethylene glycol chain has become a popular tool for increasing water solubility and bioavailability. Our interest in the development of catalytically active peptides and the selective recognition of peptides has led us to investigate strategies to increase the solubility of peptides in organic solvents. Specifically, we became interested in the introduction of solubilizing moieties at the C-terminus of two peptides. Here we present different synthetic strategies for the preparation of peptide-polyethylene glycol conjugates and discuss the effect of the polyethylene glycol chain on the solubility and other properties, such as the catalytic activity of these peptides.  相似文献   

11.
Aqueous two-phase systems have been widely used for the separation and concentration of proteins. In this work we investigated the possibility of using aqueous two-phase system for the renaturation of inclusion body proteins by studying the effect of polyethylene glycol (PEG)-salt systems on the oxidative renaturation of hen egg-white lysozyme (HEWL) with guanidinium chloride (GdmCl) present in the system. To accomplish phase separation at moderately low concentrations of polymer and salt, the total GdmCl concentration had to be kept low (<1 M). The unfolded protein exhibited very low solubility under these conditions. In an attempt to increase the solubility of the protein, temperatures of 40, 50, and 60 degrees C were investigated. The effect of PEG molecular weight was also addressed. Best renaturation yields were obtained when using PEG 3400 and working at 50 degrees C. However, the total protein concentration had to be kept at a low level of 0.2 mg/mL. Lowering the total GdmCl concentration in the system resulted in increased aggregation.  相似文献   

12.
The displacement action of polyethylene glycol of different molecular weights may be linked to the ability of the polymers to form coiled particles in solution. From conclusions drawn from their sedimentating properties in centrifugal fields the polyethylene glycols of low molecular weights, as expected, are les randomly coiled than those of higher molecular weight. It is suggested that protein molecules have the ability to diffuse into the coils of the polyethylene glycol from which they are excluded when the random coiling increases with increasing polymer concentration. From considerations based on the interaction of the polymer filament with the displaced particle the distribution of the substance between the coils and the intermolecular spaces may be predicted semi-quantitatively.  相似文献   

13.
This research study examined porcine pancreatic lipase partition in aqueous two-phase systems formed by polyethylene glycol-potassium phosphate at pH 6.0, 7.0 and 8.0, the effect of polymer molecular mass, and NaCl concentration. The enzyme was preferentially partitioned into the polyethylene glycol rich phase in systems with molecular mass 4000-8000, while with polyethylene glycol of 10,000 molecular mass it was concentrated in the phosphate rich phase. The enthalpic and entropic changes found due to the protein partition were negative for all the polyethylene glycol molecular mass systems assessed. Both thermodynamic functions were shown to be associated by an entropic-enthalpic compensation effect suggesting that the water structure ordered in the ethylene chain of polyethylene glycol plays a role in the protein partition. The addition of NaCl increased the lipase affinity to the top phase and this effect was most significant in the system polyethylene glycol 2000-NaCl 3%. This system yielded an enzyme recovery more than 90% with a purification factor of approximately 3.4.  相似文献   

14.
The displacement action of polyethylene glycol of different molecular weights may be linked to the ability of the polymers to form coiled particles in solution. From conclusions drawn from their sedimentating properties in centrifugal fields the polyethylene glycols of low molecular weights, as expected, are less randomly coiled than those of higher molecular weight. It is suggested that protein molecules have the ability to diffuse into the coils of the polyethylene glycol from which they are excluded when the random coiling increases with increasing polymer concentration. From considerations based on the interaction of the polymer filament with the displaced particle the distribution of the substance between the coils and the intermolecular spaces may be predicted semi-quantitatively.  相似文献   

15.
16.
ABSTRACT

The displacement action of polyethylene glycol of different molecular weights may be linked to the ability of the polymers to form coiled particles in solution. From conclusions drawn from their sedimentating properties in centrifugal fields the polyethylene glycols of low molecular weights, as expected, are less randomly coiled than those of higher molecular weight. It is suggested that protein molecules have the ability to diffuse into the coils of the polyethylene glycol from which they are excluded when the random coiling increases with increasing polymer concentration. From considerations based on the interaction of the polymer filament with the displaced particle the distribution of the substance between the coils and the intermolecular spaces may be predicted semi-quantitatively.  相似文献   

17.
1. The effect of iodination on the distribution of peptide hormones into the aqueous two-phase dextran-polyethylene glycol system and on the solubility of these hormones in aqueous polyethylene glycol and in water was assessed. Hormones that were studied included insulin, glucagon and parathyroid hormone. 2. The partition coefficient of native insulin in the dextran-polyethylene glycol system showed a minimum (about 1) near the isoelectric point of the hormone (pH 5). Partial iodination of insulin (one atom per molecule) caused little change in the distribution of the hormone. More extensive iodination markedly decreased the partition coefficient in the region of the isoelectric point and displaced the pH value at which the partition coefficient was a minimum towards lower values. 3. The solubility of native insulin in aqueous polyethylene glycol and in water showed a pH-dependence similar to that observed for the distribution in the dextran-polyethylene glycol system. Iodination of insulin decreased the solubility of the hormone in polyethylene glycol and in water in parallel, and decreased the pH value at which solubility was a minimum. The changes in solubility correlated with the degree of iodination and accounted for the changes in distribution observed at high concentrations of insulin. 4. Comparable effects of iodination on distribution and solubility were also observed with glucagon. 5. At concentrations of insulin below its maximum solubility, serum proteins caused a decrease in the partition coefficient of iodinated hormone, but not of native hormone. These effects correlated with the degree of iodination and resulted from a co-precipitation of iodinated insulin with serum proteins.  相似文献   

18.
Precipitation profiles of phosphofructokinase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase have been established in the range of 0–16% PEG at different pH (5–7) values. Precipitation generally occurred between narrow limits of polyethylene glycol. The polymer concentration needed to reach any level of enzyme precipitation is dependent on pH. Particular conditions (% PEG and pH) for the selective enzyme enrichment have been determined.  相似文献   

19.
Precipitation of glucose 6-phosphate dehydrogenase by poly(ethylene glycol) depends on both pH and the source of haemolysate. An increase in pH from 5 to 7 leads to an increase in the polymer concentration required for precipitation. At any pH, polymer concentration needed to precipitate the enzyme increases in the order bone marrow less than reticulocytes less than erythrocytes. This differential behaviour seems to be due to variations on the effect of pH on the state of aggregation and/or differences in the intrinsic solubility of the enzyme present in the three haemolysates. In contrast, precipitation profile of 6-phosphogluconate dehydrogenase only slightly moves towards higher concentrations of PEG when raising the pH from 5 to 7, being similar at each single pH in the three haemolysates.  相似文献   

20.
The aqueous insolubility of hydrophobic peptides has presented a barrier to the structural characterization of membrane protein transmembrane domains. Since the conjugation of polyethylene glycol is known to modulate the solubility of certain proteins and peptides, we have prepared PEG-a-Cys reagent, a polyethylene glycol derivative which reacts spontaneously with Cys residues to attach polyethylene glycol to polypeptides via a mixed disulfide bond. When desired, the PEG moiety can be readily removed by reduction with tricarboxyethylphosphine. The aqueous solubilizing power of PEG-a-Cys reagent is confirmed with a synthetic hydrophobic peptide model of a generic transmembrane segment-soluble carrier fusion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号