首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
Adenoviral, retroviral/lentiviral, adeno-associated viral, and herpesviral vectors are the major viral vectors used in gene therapy. Compared with non-viral methods, viruses are highly-evolved, natural delivery agents for genetic materials. Despite their remarkable transduction efficiency, both clinical trials and laboratory experiments have suggested that viral vectors have inherent shortcomings for gene therapy, including limited loading capacity, immunogenicity, genotoxicity, and failure to support long-term adequate transgenic expression. One of the key issues in viral gene therapy is the state of the delivered genetic material in transduced cells. To address genotoxicity and improve the therapeutic transgene expression profile, construction of hybrid vectors have recently been developed. By adding new abilities or replacing certain undesirable elements, novel hybrid viral vectors are expected to outperform their conventional counterparts with improved safety and enhanced therapeutic efficacy. This review provides a comprehensive summary of current achievements in hybrid viral vector development and their impact on the field of gene therapy.  相似文献   

2.
Gene transfer vectors based on retroviruses including oncogenic retroviruses and lentiviruses provide effective means for the delivery, integration and expression of exogenous genes in mammalian cells. Lentiviral (LV) vectors provide attractive gene delivery vehicles in the context of non-dividing cells. This review summarizes the different optimized LV genetic systems that have been developed to date. In all cases, the production of LV-derived vectors consists of a genetically split gene expression design. The viral elements that are specifically required are (i). the LV packaging helper proteins consisting of at least the gag-pol genes, (ii). the LV transfer vector RNA containing the transgene expression cassette, and (iii). an heterologous glycoprotein. While the genetic requirements and performances of the two former viral elements will be treated herein, the latter element relative to the envelope pseudotyping of LV vectors will not be further described (cf. review by Cosset in this issue).  相似文献   

3.
4.
Effective gene therapy is dependent on safe gene delivery vehicles that can achieve efficient transduction and sustained transgene expression. We are developing a hybrid viral vector system that combines in a single particle the large cloning capacity and efficient cell cycle-independent nuclear gene delivery of adenovirus (Ad) vectors with the long-term transgene expression and lack of viral genes of adeno-associated virus (AAV) vectors. The strategy being pursued relies on coupling the AAV DNA replication mechanism to the Ad encapsidation process through packaging of AAV-dependent replicative intermediates provided with Ad packaging elements into Ad capsids. The generation of these high-capacity AAV/Ad hybrid vectors takes place in Ad early region 1 (E1)-expressing cells and requires an Ad vector with E1 deleted to complement in trans both AAV helper functions and Ad structural proteins. The dependence on a replicating helper Ad vector leads to the contamination of AAV/Ad hybrid vector preparations with a large excess of helper Ad particles. This renders the further propagation and ultimate use of these gene delivery vehicles very difficult. Here, we show that Cre/loxP-mediated genetic selection against the packaging of helper Ad DNA can reduce helper Ad vector contamination by 99.98% without compromising hybrid vector rescue. This allowed amplification of high-capacity AAV/Ad hybrid vectors to high titers in a single round of propagation.  相似文献   

5.
6.
7.
Viral vectors have emerged as an important tool for manipulating gene expression in the adult mammalian brain. The adult brain is composed largely of nondividing cells, and therefore DNA viruses have become the vehicle of choice for neurobiologists interested in somatic gene transfer. Recombinant viral vectors based upon adenovirus or herpes simplex virus have been created in which a gene essential for viral replication is removed and a gene of interest is inserted in the viral genome. While this eliminates pathogenicity due to viral replication, retention of viral genes and continued expression of these genes may limit the potential of the current generation of vectors. Defective viral vectors represent a different approach, in which only viral recognition signals are used to allow packaging of foreign DNA into a viral coat while eliminating the possibility of viral gene expression within target cells. The defective HSV vector has been used to transfer genes into the adult rat brain. This vector has also been used for analysis of the preproenkephalin promoterin vivo,and important regions of this promoter have been identified using this technique. A modification ofin situPCR has been developed as an adjunctive tool for sensitively documenting the presence of vector DNA within target cells duringin vivopromoter studies. Finally, the adenoassociated virus vector has been used as the first fully defective DNA viral vector, which also eliminates any contamination by helper viruses. This vector can transfer genes into the mammalian brain and has shown significant behavioral recovery in a rodent model of Parkinson's disease. Future work will undoubtedly result in still more diverse and improved vectors; however, these studies have documented the importance of viral vectors to both basic neurobiology and the potential treatment of neurologic disease.  相似文献   

8.
Latest development in viral vectors for gene therapy   总被引:24,自引:0,他引:24  
Gene therapy includes the application of various viral vectors, which represent most types and families of viruses, suitable for infection of mammalian host cells. Both hereditary diseases and acquired illnesses, such as cancer, can be targeted. Because of the various properties of each viral vector, the definition of their application range depends on factors such as packaging capacity, host range, cell- or tissue-specific targeting, replication competency, genome integration and duration of transgene expression. Recent engineering of modified viral vectors has contributed to improved gene delivery efficacy.  相似文献   

9.
A number of lentiviral vector systems have been developed for gene delivery and therapy by eliminating and/or modifying viral genetic elements. However, all lentiviral vector systems derived from HIV-1 must have a viral packaging signal sequence, Psi (Ψ), which is placed downstream of 5′ long terminal repeat in a transgene plasmid to effectively package and deliver transgene mRNA. In this study, we examined feasible regions or sequences around Psi that could be manipulated to further modify the packaging sequence. Surprisingly, we found that the sequences immediately upstream of the Psi are highly refractory to any modification and resulted in transgene vectors with very poor gene transduction efficiency. Analysis around the Psi region revealed that there are a few sites that can be used for manipulation of the Psi sequence without disturbing the virus production as well as the efficiency of transgene RNA packaging and gene transduction. By exploiting this new vector system, we investigated the requirement of each of four individual stem-loops of the Psi sequence by deletion mapping analysis and found that all stem-loops, including the SL4 region, are needed for efficient transgene RNA packaging and gene delivery. These results suggest a possible frame of the lentiviral vector that might be useful for further modifying the region/sequence around the packaging sequence as well as directly on the Psi sequence without destroying transduction efficiency.  相似文献   

10.
More than two decades have passed since genetically modified HIV was used for gene delivery. Through continuous improvements these early marker gene-carrying HIVs have evolved into safer and more effective lentiviral vectors. Lentiviral vectors offer several attractive properties as gene-delivery vehicles, including: (i) sustained gene delivery through stable vector integration into host genome; (ii) the capability of infecting both dividing and non-dividing cells; (iii) broad tissue tropisms, including important gene- and cell-therapy-target cell types; (iv) no expression of viral proteins after vector transduction; (v) the ability to deliver complex genetic elements, such as polycistronic or intron-containing sequences; (vi) potentially safer integration site profile; and (vii) a relatively easy system for vector manipulation and production. Accordingly, lentivector technologies now have widespread use in basic biology and translational studies for stable transgene overexpression, persistent gene silencing, immunization, in vivo imaging, generating transgenic animals, induction of pluripotent cells, stem cell modification and lineage tracking, or site-directed gene editing. Moreover, in the present high-throughput '-omics' era, the commercial availability of premade lentiviral vectors, which are engineered to express or silence genome-wide genes, accelerates the rapid expansion of this vector technology. In the present review, we assess the advances in lentiviral vector technology, including basic lentivirology, vector designs for improved efficiency and biosafety, protocols for vector production and infection, targeted gene delivery, advanced lentiviral applications and issues associated with the vector system.  相似文献   

11.
BACKGROUND: The kinetics of gene expression from adenovirus-based delivery vectors will be an important variable influencing the efficacy and toxicity of these vectors. As different promoters have variable strengths and kinetic profiles, the optimal dose of a therapeutic transgene product over time may be achieved by varying the promoter. METHODS: We analyzed several viral and cellular promoters in the context of adenovector gene delivery in the mouse. The kinetics of transgene expression was evaluated following intramuscular and intravenous delivery. RESULTS: Transgene expression from the cytomegalovirus (CMV) promoter was rapidly down-regulated in the tissues following intravenous administration of adenovectors. In contrast, transgene expression from the Rous sarcoma virus (RSV) promoter increased over time such that, at 3 weeks, expression was 10-fold higher than that from the CMV promoter-containing vector in all tissues. The kinetics of transgene expression from these vectors was similar when they were delivered via the intramuscular route in BALB/c, C57BL/6 and immunodeficient mice. Efficient repeat administration of an adenovirus vector, in the presence of neutralizing antibodies, was achieved in the skeletal muscle and transgene expression persisted with the same kinetics as in na?ve animals. CONCLUSIONS: These results demonstrate that the in vivo kinetics of transgene expression by adenovectors is greatly influenced by the promoter. Adenovectors can be designed to deliver a transient bolus or a sustained level of protein expression in the target tissue depending on the requirements for particular indications. These results have implications for both therapeutic and vaccine indications.  相似文献   

12.

Background  

The recent advent of murine leukaemia virus (MLV)-based replication-competent retroviral (RCR) vector technology has provided exciting new tools for gene delivery, albeit the advances in vector efficiency which have been realized are also accompanied by a set of fresh challenges. The expression of additional transgene sequences, for example, increases the length of the viral genome, which can lead to reductions in replication efficiency and in turn to vector genome instability. This necessitates efforts to analyse the rate and mechanism of recombinant emergence during the replication of such vectors to provide data which should contribute to improvements in RCR vector design.  相似文献   

13.
Clinical applications of tumor gene therapy require tumor-specific delivery or expression of therapeutic genes in order to maximize the oncolytic index and minimize side effects. This study demonstrates activation of transgene expression exclusively in hepatic metastases after systemic application of a modified first-generation (E1A/E1B-deleted) adenovirus vector (AdE1-) in mouse tumor models. The discrimination between tumors and normal liver tissue is based on selective DNA replication of AdE1- vectors in tumor cells. This new AdE1- based vector system uses homologous recombination between inverted repeats to mediate precise rearrangements within the viral genome. As a result of these rearrangements, a promoter is brought into conjunction with a reporter gene creating a functional expression cassette. Genomic rearrangements are dependent upon viral DNA replication, which in turn occurs specifically in tumor cells. In a mouse tumor model with liver metastases derived from human tumor cells, a single systemic administration of replication activated AdE1- vectors achieved transgene expression in every metastasis, whereas no extra-tumoral transgene induction was observed. Here we provide a new concept for tumor-specific gene expression that is also applicable for other conditionally replicating adenovirus vectors.  相似文献   

14.
Simian virus-40 (SV40), an icosahedral papovavirus, has recently been modified to serve as a gene delivery vector. Recombinant SV40 vectors (rSV40) are good candidates for gene transfer, as they display some unique features: SV40 is a well-known virus, nonreplicative vectors are easy-to-make, and can be produced in titers of 10(12) IU/ml. They also efficiently transduce both resting and dividing cells, deliver persistent transgene expression to a wide range of cell types, and are nonimmunogenic. Present disadvantages of rSV40 vectors for gene therapy are a small cloning capacity and the possible risks related to random integration of the viral genome into the host genome. Considerable efforts have been devoted to modifing this virus and setting up protocols for viral production. Preliminary therapeutic results obtained both in tissue culture cells and in animal models for heritable and acquired diseases indicate that rSV40 vectors are promising gene transfer vehicles. This article reviews the work performed with SV40 viruses as recombinant vectors for gene transfer. A summary of the structure, genomic organization, and life cycle of wild-type SV40 viruses is presented. Furthermore, the strategies utilized for the development, production, and titering of rSV40 vectors are discussed. Last, the therapeutic applications developed to date are highlighted.  相似文献   

15.
16.
Relatively successful elsewhere, gene delivery aimed at the vasculature and kidney has made very little progress. In the kidney, the hurdles are related to the unique structure-function relationships of this organ and in the blood vessels to a variety of, mostly endothelial, factors making the delivery of transgenes very difficult. Among gene-therapeutic approaches, most viral gene delivery systems utilized to date have shown significant practical and safety-related limitations due to the level and duration of recombinant transgene expression as well as their induction of a significant host immune response to vector proteins. Recombinant adeno-associated virus (rAAV) vectors appear to offer a vehicle for safe, long-term transgene expression. rAAV-based vectors are characterized by a relative non-immunogenicity and the absence of viral coding sequences. Furthermore, they allow for establishment of long-term latency without deleterious effects on the host cell. This brief review addresses problems related to transgene-delivery to kidney and vasculature with particular attention given to rAAV vectors. The potential for gene therapy as a strategy for selected renal and vascular diseases is also discussed.  相似文献   

17.
Adeno-associated viral vectors for gene transfer and gene therapy.   总被引:11,自引:0,他引:11  
Adeno-associated virus (AAV) is a defective, non-pathogenic human parvovirus that depends for growth on coinfection with a helper adenovirus or herpes virus. Recombinant adeno-associated viruses (rAAVs) have attracted considerable interest as vectors for gene therapy. In contrast to other gene delivery systems, rAAVs lack all viral genes and show long-term gene expression in vivo without immune response or toxicity. Over the past few years, many applications of rAAVs as therapeutic agents have demonstrated the utility of this vector system for long-lasting genetic modification and gene therapy in preclinical models of human disease. New production methods have increased rAAV vector titers and eliminated contamination by adenovirus. In addition, vectors for regulatable gene expression and vectors retargeted to different cells have been engineered. These advancements are expected to accelerate and facilitate further animal model studies, providing validation for use of rAAVs in human clinical trials.  相似文献   

18.
19.
Bernt K  Liang M  Ye X  Ni S  Li ZY  Ye SL  Hu F  Lieber A 《Journal of virology》2002,76(21):10994-11002
We have developed a new class of adenovirus vectors that selectively replicate in tumor cells. The vector design is based on our recent observation that a variety of human tumor cell lines support DNA replication of adenovirus vectors with deletions of the E1A and E1B genes, whereas primary human cells or mouse liver cells in vivo do not. On the basis of this tumor-selective replication, we developed an adenovirus system that utilizes homologous recombination between inverted repeats to mediate precise rearrangements within the viral genome resulting in replication-dependent activation of transgene expression in tumors (Ad.IR vectors). Here, we used this system to achieve tumor-specific expression of adenoviral wild-type E1A in order to enhance viral DNA replication and spread within tumor metastases. In vitro DNA replication and cytotoxicity studies demonstrated that the mechanism of E1A-enhanced replication of Ad.IR-E1A vectors is efficiently and specifically activated in tumor cells, but not in nontransformed human cells. Systemic application of the Ad.IR-E1A vector into animals with liver metastases achieved transgene expression exclusively in tumors. The number of transgene-expressing tumor cells within metastases increased over time, indicating viral spread. Furthermore, the Ad.IR-E1A vector demonstrated antitumor efficacy in subcutaneous and metastatic models. These new Ad.IR-E1A vectors combine elements that allow for tumor-specific transgene expression, efficient viral replication, and spread in liver metastases after systemic vector application.  相似文献   

20.
Gene delivery using herpes simplex virus vectors   总被引:7,自引:0,他引:7  
Herpes simplex virus (HSV) is a neurotropic DNA virus with many favorable properties as a gene delivery vector. HSV is highly infectious, so HSV vectors are efficient vehicles for the delivery of exogenous genetic material to cells. Viral replication is readily disrupted by null mutations in immediate early genes that in vitro can be complemented in trans, enabling straightforward production of high-titre pure preparations of non-pathogenic vector. The genome is large (152 Kb) and many of the viral genes are dispensable for replication in vitro, allowing their replacement with large or multiple transgenes. Latent infection with wild-type virus results in episomal viral persistence in sensory neuronal nuclei for the duration of the host lifetime. Transduction with replication-defective vectors causes a latent-like infection in both neural and non-neural tissue; the vectors are non-pathogenic, unable to reactivate and persist long-term. The latency active promoter complex can be exploited in vector design to achieve long-term stable transgene expression in the nervous system. HSV vectors transduce a broad range of tissues because of the wide expression pattern of the cellular receptors recognized by the virus. Increasing understanding of the processes involved in cellular entry has allowed preliminary steps to be taken towards targeting the tropism of HSV vectors. Using replication-defective HSV vectors, highly encouraging results have emerged from recent pre-clinical studies on models of neurological disease, including glioma, peripheral neuropathy, chronic pain and neurodegeneration. Consequently, HSV vectors encoding appropriate transgenes to tackle these pathogenic processes are poised to enter clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号