首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
2.
Chen S  Li F  Zhuo RX  Cheng SX 《Molecular bioSystems》2011,7(10):2841-2847
Among different non-viral gene delivery methods, the technique of co-precipitation of Ca(2+) with DNA in the presence of inorganic anions is an attractive option because of the biocompatibility and biodegradability. In this study, nano-sized CaCO(3)/DNA co-precipitates for gene delivery were prepared. The effect of Ca(2+)/CO(3)(2-) molar ratio on the gene delivery was investigated. The mechanism of the transfection mediated by CaCO(3)/DNA co-precipitates was studied by treatment of the cells with chloroquine, wortmannin and cytochalasin D, respectively. The in vitro gene transfections in different cells were carried out for both solution-based transfection and solid-phase transfection. The gene expression of the calcium carbonate based approach is strongly affected by the Ca(2+)/CO(3)(2-) ratio because the size of CaCO(3)/DNA co-precipitates is mainly determined by the Ca(2+)/CO(3)(2-) ratio. In addition, the encapsulation efficiency of DNA increases with decreasing Ca(2+)/CO(3)(2-) ratio. With a suitable Ca(2+)/CO(3)(2-) ratio, CaCO(3)/DNA co-precipitates could effectively mediate gene transfection with the expression levels higher than that of Lipofectamine 2000 in the presence of serum. The mechanism study shows that CaCO(3)/DNA co-precipitates are internalized via endocytosis of the cells and macropinocytosis is the main route of internalization. Compared with the solution-based transfection, CaCO(3)/DNA co-precipitates in the solid-phase transfection exhibit a lower gene expression level. The calcium carbonate based approach has great potential in gene delivery.  相似文献   

3.
The cationic lipid-mediated gene transfer process involves sequential steps: internalization of the cationic lipid-DNA complexes inside the cells via an endocytosis-like mechanism, escape from endosomes, dissociation of the complex, and finally entry of free DNA into the nucleus. However, cationic lipid-DNA complex dissociation in the cytoplasm and the ability of the subsequently released DNA to enter the nucleus have not yet been demonstrated. In this report we showed, using confocal laser scanning analysis, that microinjection of a double fluorescent-labeled cationic lipid-pCMV-LacZ plasmid complex into the cytoplasm of HeLa cells results in efficient complex dissociation. However, the released DNA did not enter the nucleus, and no significant transfection could be detected. In contrast, nuclear microinjection of the cationic lipid-pCMV-LacZ plasmid complex resulted in efficient complex dissociation and transfection of all the cells. Taken together, the data suggest that intracellular dissociation of the cationic lipid-DNA complex is not a limiting step for transfection as previously thought.  相似文献   

4.
Many microorganisms growing on water-insoluble substrates have been known to produce surface-active compounds called biosurfactants. Although biosurfactants have received increasing attention due to their special properties, there has been no information available until now of a role for them with regard to gene transfection. Thus, we studied here the effects of biosurfactants on gene transfection by cationic liposomes with a cationic cholesterol derivative. Our results showed clearly that a biosurfactant of mannosylerythritol lipid A (MEL-A) increased dramatically the efficiency of gene transfection mediated by cationic liposomes with a cationic cholesterol derivative. Among them, the liposomes with a cationic cholesterol derivative, cholesteryl-3 beta-carboxyamindoethylene-N-hydroxyethylamine (I), were much more effective for gene transfection than the liposomes with DC-Chol (cholesteryl-3 beta-oxycarboxyamidoethylenedimethylamine) or liposomes without MEL-A in various cultured cells. This demonstrates that this new finding has great potential in the experiment of gene transfection and gene therapy mediated by nonviral vectors such as cationic liposomes.  相似文献   

5.
BACKGROUND: p53 is frequently mutated in many cancers including human head and neck squamous cell carcinoma and pancreatic cancer. In tumor models, wild-type (wt) p53 gene transfer induces apoptosis and tumor regression in vivo, justifying the extensive clinical investigation of p53 gene therapy. METHODS: p53 nonviral-mediated gene transfer was achieved using glucosylated polyethylenimine (PEI) in conjunction with photochemical internalisation (PCI). Experimental conditions were optimised using the green fluorescent protein (GFP) as a reporter. p53 gene transfer was then evaluated using semi-quantitative RT-PCR in p53-deleted PANC3 and p53-mutated FaDu cell lines. Following gene transfer, induction of apoptosis was investigated using phosphatidylserine externalisation and nuclear fragmentation assays. Induction of long-term cell death was analysed using colony-forming assays. RESULTS: PCI was found to enhance GFP gene transfer after 48 h in both cell lines. Whether using glucosylated-PEI alone or associated with PCI, p53 gene transfer was achieved with subsequent recovery of p53 mRNA expression in PANC3 cells and a significant 4-fold increase in p53 mRNA expression in FaDu cells. PCI was found to further enhance p53 mRNA expression by 2.3-fold in PANC3 cells. Spontaneous induction of apoptosis following wt-p53 gene transfer was achieved in both cell lines. PCI was found to enhance apoptosis up to levels similar to those achieved with chemotherapy. As a consequence, long-term cell death was significantly enhanced after wt-p53 gene transfer when PCI was used in both cell lines, yielding up to 60% cell death. CONCLUSIONS: PCI increases glucosylated-PEI-mediated p53 gene transfer, apoptosis as well as cell death in mutant p53 human cancer cells.  相似文献   

6.
Non-self class I histocompatibility Ag can act as strong alloantigens and be recognized as distinct targets by CTL. To study the possibility of using allograft rejection to generate tumor-specific immunity, we have introduced an allogeneic class I histocompatibility gene, the H-2Kb gene, into a k haplotype tumor, K36.16, by DNA-mediated gene transfer. The K36.16 tumor grows readily and does not confer protective immunity in AKR mice. A total of 37 H-2Kb-transfected K36.16 clones (Kb/K36.16) was isolated and studied individually. The Kb/K36.16 clones were found to differ significantly in the amount of the exogenous H-2Kb antigens expressed on their cell surface. Moreover, as a result of the transfection, the level of expression of the endogenous H-2Dk Ag was also altered when compared to that of the parental K36.16 tumor cells. All the Kb/K36.16 clones that were positive for the H-2Kb Ag were rejected by the semisyngeneic AKR mice. Moreover, some of these Kb/K36.16 clones were also rejected by syngeneic (AKR x C57BL/10)F1 mice. In consequence of immunization with the Kb/K36.16 clones, the AKR and F1 mice were able to survive a subsequent challenge of the wild-type, unmodified, parental K36.16 tumor cells. More importantly, some of these Kb/K36.16 clones demonstrated an active and specific immunotherapeutic effect, and they were able to eradicate the growth of the parental K36.16 tumor cells in AKR mice. This observation therefore reinforces the feasibility of using DNA-mediated gene transfer as a molecular approach to abrogate tumor growth.  相似文献   

7.
Testis mediated gene transfer (TMGT) is a potential tool for making transgenic mice having more than 90% success rate. However, this method needs further standardization before it can be adapted in other species including livestock. In order to standardize the TMGT in goat, buck testes (n = 20) collected from the slaughter house were injected with a vector driving green fluorescent protein (GFP) expression under a cytomegalovirus (CMV) promoter. Then, the testes were subjected to electroporation with predetermined voltage, pulse length, pulse interval and number of pulses. Seminiferous tubules were isolated from the electroporated testis and cultured in-vitro. The expression was checked at regular intervals. Green fluorescence was observed on different days in different samples. It suggests transient integration of the plasmid into the seminiferous tubules. This in-vitro transfection of seminiferous tubule using electroporation will provide valuable baseline information.  相似文献   

8.
To develop the efficient non-viral vector for gene delivery, we compared transfection activities of cationic cholesterol derivatives. We found that the stability of the liposome-DNA complex in the presence of endosome deeply related to the transfection efficiency. We also found that the introduction of a hydrophilic group to the amino terminal of the cholesterol derivative decreased stability and facilitated the release of DNA from the endosome, resulting in higher transfection efficiency.  相似文献   

9.
Gelonin, a type I ribosome-inactivating plant toxin, executes N-glycosidase activity on eukaryotic ribosomes. However, on intact cells, gelonin is relatively non-toxic, due to an incapability to penetrate cell membranes. Recently, a novel method, photochemical internalization (PCI), was invented for the translocation of membrane-impermeable molecules including gelonin to the cytosol [K. Berg et al., Cancer Res. 59 (1999) 1180-1183]. The combination of gelonin and photoactivation of endosomal and lysosomal localizing photosensitizers gives strong synergistic cytotoxic effects. In this study, we have evaluated the intracellular transport and stability of gelonin. By fluorescence microscopy, it was shown that gelonin co-localizes with the endosomal and lysosomal localizing photosensitizer, aluminum phthalocyanine with two sulfonate groups on adjacent phenyl rings, and both molecules re-localized to cytosol subsequently to light exposure. Gelonin accumulated in endosomal compartments by incubation at 18 degrees C was released to cytosol by PCI with concomitant inhibition of protein synthesis indicating that PCI can be executed through rupture of endosomal vesicles. The cathepsin inhibitor L-trans-epoxysuccinyl-leucyl amido(4-guanido)butane increased the cytotoxic effect of gelonin after PCI when gelonin was provided as a 2 h pulse followed by 4 h chase before PCI. Thus, although gelonin can enter the cytosol from lysosomes, lysosomal degradation is a limiting factor for the outcome of PCI of gelonin.  相似文献   

10.
The efficiency of gene transfection mediated by nonviral vectors is limited because of nonoptimal intracellular trafficking of transfecting DNA. Most nonviral vectors deliver transfecting DNA into a cell through endocytosis. However, poor escape from endocytic vesicles and inefficient transport of DNA into the nucleus often limits a success of gene transfection. Photochemical transfection is a new method, based on light-induced permeabilisation of endocytic vesicles, liberating transfecting DNA into the cytosol, concurrently increasing the chances for DNA to enter the nucleus.The aim of this study was to investigate the role of the cell cycle for the efficiency of photochemical transfection. It was demonstrated that in asynchronous human colon carcinoma HCT 116 cells photochemical treatment increased the transfection mediated by the nonviral vectors, the cationic polypeptide polylysine and the cationic lipid N-(2-aminoethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-propanaminium bromide/dioleoylphosphatidylethanolamine (beta AE-DMRIE/DOPE), by 30- and 2.5-fold, respectively. In aphidicolin-synchronised cells, photochemical transfection mediated by polylysine was dependent on the cell cycle: transfection level was 4-fold higher when illumination, inducing photochemical reactions, was performed during the G2/M phase as compared to the G1/early-S phase. The cell cycle influence on photochemical transfection mediated by beta AE-DMRIE/DOPE was very low: only 20% difference between G2/M and the G1/S phase was observed. We suggest that transgenes, photochemically liberated close/during mitosis, perhaps have the highest opportunity to enter the nucleus and be expressed. However, the dependence of photochemical transfection on the cell cycle might be partially disguised by various factors induced by photochemical treatment.  相似文献   

11.
12.
To develop novel gene delivery carriers, aminated polysorbate 80 (P80‐NH2) was synthesized with strong positively charged properties through the introduction of three amine groups. The resulting P80‐NH2 and DNA polyplex exhibited superb condensation abilities due to the high densities of positively charged amines groups. Size and surface charge of polyplex were shown to be well suited for cellular internalization. In addition, the P80‐NH2/DNA polyplex demonstrated acceptable transfection efficiency in HeLa cells and was nontoxic relative to the conventional 25‐kDa polyethyleneimine system. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

13.
In vitro gene transfection using dendritic poly(L-lysine)   总被引:3,自引:0,他引:3  
Monodispersed dendritic poly(L-lysine)s (DPKs) of several generations were synthesized, and their characteristics as a gene transfection reagent were then investigated. The agarose gel shift and ethidium bromide titration assay proved that the DPKs of the third generation and higher could form a complex with a plasmid DNA, and the degree of compaction of the DNA was increased by the increasing number of the generation. The DPKs of the fifth and sixth generation, which have 64 and 128 amine groups on the surface of the molecule, respectively, showed efficient gene transfection ability into several cultivated cell lines without significant cytotoxity. In addition, the transfection efficiency of the DPK of the sixth generation was not seriously reduced even if serum was added at 50% of the final concentration into the transfection medium. Because we can strictly synthesize various DPK derivatives, which have several types of branch units, terminal cationic groups, and so on, they are expected to be a good object of study regarding the basic information on the detailed mechanism of gene transfection into cells. We also expect to be able to easily construct DPK-based functional gene carriers, e.g., DPKs modified by ligands such as a sugar chain, which can enable advanced gene delivery in vivo.  相似文献   

14.
15.
Two plasmids, p13GUS and p13GUS2, were constructed to create a gene trap system containing the promoterless β-glucuronidase (GUS) reporter gene in the T-DNA region. Transformation of these two plasmids into the rice variety Zhonghua 11 (Oryza sativa ssp. japonica cv.), mediated by Agrobacterium tumefaciens, resulted in 942 independent transgenic lines. Histochemical GUS assays revealed that 31 To plants had various patterns of the reporter gene expression, including expression in only one tissue, and simultaneously in two or more tissues. Hygromycin-resistant (hygr) homozygotes were screened and the copy number of the T-DNA inserts was determined in the GUS-positivs transgenic plants. The flanking sequences of the T-DNA were isolated by inverse-polymerase chain reaction and the insert positions on the rice genome of T-DNA were determined by a basic local alignment search tool in the GUS-positive transgenic plants transformed with plasmid p13GUS. Moreover, calii induced from the seeds of the T1 generation of 911 GUS-negative transgenic lines were subjected to stress and hormone treatments. Histochemical GUS assays were carried out on the calli before and after treatment. The results revealed that calli from 21 lines displayed differential GUS expression after treatment. All of these data demonstrated that this trap system is suitable for identifying rice genes, including those that are sensitive to induction.  相似文献   

16.
BACKGROUND: Conjugation through primary amines is one of the most commonly used methods to modify polycationic vectors for gene delivery. A better understanding of the effect of the conjugation on the mechanisms of transgene expression can help design efficient polycationic vectors. METHODS: Dextran with a molecular weight of 1500 was grafted onto polyethylenimine (PEI) to produce various degrees of grafting in an effort to investigate how the conjugation affected the mechanisms of transgene expression. Flow cytometry was employed to quantitate the cellular entry of plasmid and the level of transgene expression, which were measured using ethidium monoazide labeled plasmid and green fluorescent protein (GFP), respectively. The buffering capacity of the grafted PEI was determined by titration, and the integrity of the DNA-polymer complexes were examined by exposure to heparin. RESULTS: Grafting of dextran onto PEI was found to significantly diminish the cytotoxicity, buffering capacity, cellular entry, and the integrity of the DNA-polymer complexes. The reductions enlarged as the degree of grafting increased from 0 to 1.84%; however, at an optimal degree of grafting, the dextran-grafted PEI enhanced the percentages of GFP-positive cells to a level 3 times and 1.3 times of those mediated by unmodified PEI for CHO and MDA-MB-231 cells, respectively. CONCLUSIONS: These results demonstrated that the conjugation of dextran onto the primary amines of PEI inhibited the entry of plasmid across the cell membrane, but the change in the structures of the DNA-polymer complexes was able to promote transgene expression when the degrees of conjugation fell below 0.64%.  相似文献   

17.
Arachidonic acid at 100 nM stimulated internalisation of 125I-leptin in human placental choriocarcinoma (BeWo) cells by 3-fold compared with controls. In contrast, eicosapentaenoic acid at similar concentration decreased internalisation of leptin by 2-fold. Use of ibuprofen and indomethacin (inhibitors of prostaglandin synthesis) inhibited the stimulatory effect of arachidonic acid. Prostaglandin E(2), a cyclooxygenase metabolite of arachidonic acid, stimulated internalisation of leptin by these cells. All these data demonstrate that stimulation of leptin internalisation by arachidonic acid in placental trophoblasts may be mediated via prostaglandin E(2).  相似文献   

18.
Amyloid beta peptide is recognized as the main constituent of the extracellular amyloid plaques, the major neuropathological hallmark of Alzheimer's disease. Abeta is a small peptide constitutively expressed in normal cells, not toxic in the monomeric form but aggregated Abeta is assumed to be the main if not the only factor causing Alzheimer's disease. Interestingly, the new reports suggest neurotoxicity of soluble Abeta oligomers rather than amyloid fibrils. Because of the fact that fibrils were thought to be the main toxic species in AD, early structural studies focused on fibrils themselves and Abeta monomers, as their building blocks while there is practically no data on oligomer structure and mechanism of neurotoxicity. Using a model peptide spanning residues 10–30 of Abeta, obtained by overexpression in bacteria, we have employed mass spectrometry of noncovalent complexes and disulfide rearrangement assay to gain new insight into structure and dynamics of a prenucleation step of Abeta peptide oligomerisation.  相似文献   

19.
Although ubiquitin is thought to be important for the autophagic sequestration of invading bacteria (also called xenophagy), its precise role remains largely enigmatic. Here we determined how ubiquitin is involved in this process. After invasion, ubiquitin is conjugated to host cellular proteins in endosomes that contain Salmonella or transfection reagent–coated latex (polystyrene) beads, which mimic invading bacteria. Ubiquitin is recognized by the autophagic machinery independently of the LC3–ubiquitin interaction through adaptor proteins, including a direct interaction between ubiquitin and Atg16L1. To ensure that invading pathogens are captured and degraded, Atg16L1 targeting is secured by two backup systems that anchor Atg16L1 to ubiquitin-decorated endosomes. Thus, we reveal that ubiquitin is a pivotal molecule that connects bacteria-containing endosomes with the autophagic machinery upstream of LC3.  相似文献   

20.
Dendrimers are a new class of nanocomposite materials. They are branching polymers whose structure is formed by monomeric subunit branches diverging to all sides from a central nucleus. The type of nucleus, attached monomers, and functional groups can be chosen during synthesis, which produces dendrimers of definite size, shape, density, polarity, branch mobility, and solubility. This review deals with problems of dendrimer molecular structures and capability of in vitro, in vivo, ex vivo, and in situ transfection of genetic material. Advantages and shortcomings of different types of dendrimers in this respect are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号