首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this article is to demonstrate possible recombination‐associated evolutionary forces affecting the genomic distribution of processed pseudogenes. The relationship between recombination rate and the distribution of processed pseudogenes is analysed in the human genome. The results show that processed pseudogenes preferentially accumulate in regions of low recombination rates and this correlation cannot be explained by indirect relationships with GC content and gene density. Several explanatory models for the observation are discussed. A model of selection against ectopic recombination is tested based on the difference in distribution pattern between two classes of processed pseudogenes, which differ in the possibility of stimulating ectopic recombination. Our results indicate that the correlation between processed pseudogene density and recombination rate is probably results, in part, from the selection against ectopic recombination between closely located homologous processed pseudogenes. We also found a length effect in processed pseudogene distribution, namely long processed pseudogenes are located more preferentially in regions of low recombination rates than short ones.  相似文献   

2.
The distribution of guanine and cytosine nucleotides throughout a genome, or the GC content, is associated with numerous features in mammals; understanding the pattern and evolutionary history of GC content is crucial to our efforts to annotate the genome. The local GC content is decaying toward an equilibrium point, but the causes and rates of this decay, as well as the value of the equilibrium point, remain topics of debate. By comparing the results of 2 methods for estimating local substitution rates, we identify 620 Mb of the human genome in which the rates of the various types of nucleotide substitutions are the same on both strands. These strand-symmetric regions show an exponential decay of local GC content at a pace determined by local substitution rates. DNA segments subjected to higher rates experience disproportionately accelerated decay and are AT rich, whereas segments subjected to lower rates decay more slowly and are GC rich. Although we are unable to draw any conclusions about causal factors, the results support the hypothesis proposed by Khelifi A, Meunier J, Duret L, and Mouchiroud D (2006. GC content evolution of the human and mouse genomes: insights from the study of processed pseudogenes in regions of different recombination rates. J Mol Evol. 62:745-752.) that the isochore structure has been reshaped over time. If rate variation were a determining factor, then the current isochore structure of mammalian genomes could result from the local differences in substitution rates. We predict that under current conditions strand-symmetric portions of the human genome will stabilize at an average GC content of 30% (considerably less than the current 42%), thus confirming that the human genome has not yet reached equilibrium.  相似文献   

3.
4.
We present a new likelihood method for detecting constrained evolution at synonymous sites and other forms of nonneutral evolution in putative pseudogenes. The model is applicable whenever the DNA sequence is available from a protein-coding functional gene, a pseudogene derived from the protein-coding gene, and an orthologous functional copy of the gene. Two nested likelihood ratio tests are developed to test the hypotheses that (1) the putative pseudogene has equal rates of silent and replacement substitutions; and (2) the rate of synonymous substitution in the functional gene equals the rate of substitution in the pseudogene. The method is applied to a data set containing 74 human processed-pseudogene loci, 25 mouse processed-pseudogene loci, and 22 rat processed-pseudogene loci. Using the informatics resources of the Human Genome Project, we localized 67 of the human-pseudogene pairs in the genome and estimated the GC content of a large surrounding genomic region for each. We find that, for pseudogenes deposited in GC regions similar to those of their paralogs, the assumption of equal rates of silent and replacement site evolution in the pseudogene is upheld; in these cases, the rate of silent site evolution in the functional genes is approximately 70% the rate of evolution in the pseudogene. On the other hand, for pseudogenes located in genomic regions of much lower GC than their functional gene, we see a sharp increase in the rate of silent site substitutions, leading to a large rate of rejection for the pseudogene equality likelihood ratio test.  相似文献   

5.
This study presents compelling evidence that recombination significantly increases the silent GC content of a genome in a selectively neutral manner, resulting in a highly significant positive correlation between recombination and "GC3s" in the yeast Saccharomyces cerevisiae. Neither selection nor mutation can explain this relationship. A highly significant GC-biased mismatch repair system is documented for the first time in any member of the Kingdom Fungi. Much of the variation in the GC3s within yeast appears to result from GC-biased gene conversion. Evidence suggests that GC-biased mismatch repair exists in numerous organisms spanning six kingdoms. This transkingdom GC mismatch repair bias may have evolved in response to a ubiquitous AT mutational bias. A significant positive correlation between recombination and GC content is found in many of these same organisms, suggesting that the processes influencing the evolution of the yeast genome may be a general phenomenon. Nonrecombining regions of the genome and nonrecombining genomes would not be subject to this type of molecular drive. It is suggested that the low GC content characteristic of many nonrecombining genomes may be the result of three processes (1) a prevailing AT mutational bias, (2) random fixation of the most common types of mutation, and (3) the absence of the GC-biased gene conversion which, in recombining organisms, permits the reversal of the most common types of mutation. A model is proposed to explain the observation that introns, intergenic regions, and pseudogenes typically have lower GC content than the silent sites of corresponding open reading frames. This model is based on the observation that the greater the heterology between two sequences, the less likely it is that recombination will occur between them. According to this "Constraint" hypothesis, the formation and propagation of heteroduplex DNA is expected to occur, on average, more frequently within conserved coding and regulatory regions of the genome. In organisms possessing GC-biased mismatch repair, this would enhance the GC content of these regions through biased gene conversion. These findings have a number of important implications for the way we view genome evolution and suggest a new model for the evolution of sex.  相似文献   

6.
7.
Aneura mirabilis is a parasitic liverwort that exploits an existing mycorrhizal association between a basidiomycete and a host tree. This unusual liverwort is the only known parasitic seedless land plant with a completely nonphotosynthetic life history. The complete plastid genome of A. mirabilis was sequenced to examine the effect of its nonphotosynthetic life history on plastid genome content. Using a partial genomic fosmid library approach, the genome was sequenced and shown to be 108,007 bp with a structure typical of green plant plastids. Comparisons were made with the plastid genome of Marchantia polymorpha, the only other liverwort plastid sequence available. All ndh genes are either absent or pseudogenes. Five of 15 psb genes are pseudogenes, as are 2 of 6 psa genes and 2 of 6 pet genes. Pseudogenes of cysA, cysT, ccsA, and ycf3 were also detected. The remaining complement of genes present in M. polymorpha is present in the plastid of A. mirabilis with intact open reading frames. All pseudogenes and gene losses co-occur with losses detected in the plastid of the parasitic angiosperm Epifagus virginiana, though the latter has functional gene losses not found in A. mirabilis. The plastid genome sequence of A. mirabilis represents only the second liverwort, and first mycoheterotroph, to have its plastid genome sequenced. We observed a pattern of genome evolution congruent with functional gene losses in parasitic angiosperms but suggest that its plastid genome represents a genome in the early stages of decay following the relaxation of selection pressures.  相似文献   

8.
9.
人类基因组上的假基因   总被引:5,自引:0,他引:5  
周光金  余龙  赵寿元 《生命科学》2004,16(4):210-214,230
假基因是基因组上与编码基因序列非常相似的非功能性基因组DNA拷贝,一般情况都不被转录,且没有明确生理意义。假基因根据其来源可分为复制假基因和已加工假基因。迄今为止,明确鉴定的人类假基因多为已加工假基因,有8000个之多。在Swiss-Prot/TrEMBL收录的编码蛋白质的将近25500个基因序列中,约10%在基因组中有一个或多个近全长已加工假基因。其余的功能基因都没有已加工假基因。核糖体蛋白基因具有最多数量的已加工假基因,约有l700个(占已加工假基因数的22%),少数基因,如cyclophilinA、肌动蛋白(actin)、角蛋白(keratin)、GAPDH、细胞色素C(cytochromec)和nucleophosmin等则有很多份已加工假基因。总体上讲,假基因在人类染色体上的分布与染色体长度成比例,但已加工假基因在GC含量为41%~46%的染色体区域密度最高。已加工假基因的拷贝数和功能基因在生殖器官中的表达高度一致,说明许多假基因发生在胚胎阶段,另外也和基因中GC含量和基因大小密切相关。假基因的准确鉴定对基因组进化、分子医学研究和医学应用具有重要意义。  相似文献   

10.
Choi I  Oh J  Cho BN  Ahnn J  Jung YK  Han Kim D  Cho C 《Genomics》2004,83(4):636-646
ADAM (a disintegrin and metalloprotease) family members with testis-specific or -predominant gene expression are divided phylogenically into two groups: ADAMs 2, 3, 5, 27, and 32 (the first group) and ADAMs 4, 6, 20, 21, 24, 25, 26, 29, 30, and 34 (the second group). We cloned and sequenced cDNAs for previously unidentified mouse Adams that belong to the second group. We found that all the Adam genes in the second phylogenic group are transcribed by both somatic and germ cells in mouse testis, representing a unique expression pattern different from that of the first-group Adams. Genomic analyses revealed that all the second-group Adam genes lack introns interrupting protein-coding sequences and many of them are present as multicopy genes, resulting in total of 14 functional mouse genes in this phylogenic group. Comparing the mouse and human ADAM genes, we found that a number of these mouse Adam genes do not have human orthologues and, even if they exist, some orthologues are pseudogenes in human. These results suggest the differential expansion of the second-group Adam genes in the mouse genome during evolution and a relationship between these Adams and male reproduction unique to mouse.  相似文献   

11.
12.
This paper establishes that recombination drives the evolution of GC content in a significant way. Because the human P-arm pseudoautosomal region (PAR1) has been shown to have a high recombination rate, at least 20-fold more frequent than the genomic average of approximately 1 cM/Mb, this region provides an ideal system to study the role of recombination in the evolution of base composition. Nine non-coding regions of PAR1 are analyzed in this study. We have observed a highly significant positive correlation between the recombination rate and GC content (rho = 0.837, p < or = 0.005). Five regions that lie in the distal part of PAR1 are shown to be significantly higher than genomic average divergence. By comparing the intra- and inter-specific AT->GC -GC->AT ratios, we have detected no fixation bias toward GC alleles except for L254915, which has excessive AT-->GC changes in the human lineage. Thus, we conclude that the high GC content of the PAR1 genes better fits the biased gene conversion (BGC) model.  相似文献   

13.
CpG islands (CGIs) are often considered as gene markers, but the number of CGIs varies among mammalian genomes that have similar numbers of genes. In this study, we investigated the distribution of CGIs in the promoter regions of 3,197 human-mouse orthologous gene pairs and found that the mouse genome has notably fewer CGIs in the promoter regions and less pronounced CGI characteristics than does the human genome. We further inferred CGI's ancestral state using the dog genome as a reference and examined the nucleotide substitution pattern and the mutational direction in the conserved regions of human and mouse CGIs. The results reveal many losses of CGIs in both genomes but the loss rate in the mouse lineage is two to four times the rate in the human lineage. We found an intriguing feature of CGI loss, namely that the loss of a CGI usually starts from erosion at the both edges and gradually moves towards the center. We found functional bias in the genes that have lost promoter-associated CGIs in the human or mouse lineage. Finally, our analysis indicates that the association of CGIs with housekeeping genes is not as strong as previously estimated. Our study provides a detailed view of the evolution of promoter-associated CGIs in the human and mouse genomes and our findings are helpful for understanding the evolution of mammalian genomes and the role of CGIs in gene function.  相似文献   

14.
Processed genes are created by retroposition from messenger RNA of expressed genes. The estimated amount of processed copies of genes in the human genome is 10,000-14,000. Some of these might be pseudogenes with the expected pattern for nonfunctional sequences, but some others might be an important source of new genes. We have studied the evolution of a Phosphoglycerate mutase processed gene (PGAM3) described in humans and believed to be a pseudogene. We sequenced PGAM3 in chimpanzee and macaque and obtained polymorphism data for human coding region. We found evidence that PGAM3 likely produces a functional protein, as an example of addressing functionality for human processed pseudogenes. First, the open reading frame was intact despite many deletions that occurred in the 3' untranslated region. Second, it appears that the gene is expressed. Finally, interspecies and intraspecies variation for PGAM3 was not consistent with the neutral model proposed for pseudogenes, suggesting that a new functional primate gene has originated. Amino acid divergence was significantly higher than synonymous divergence in PGAM3 lineage, supporting positive selection acting in this gene. This role of selection was further supported by the excess of rare alleles in a population genetic analysis. PGAM3 is located in a region of very low recombination; therefore, it is conceivable that the rapid fixation events in this newly arising gene may have contributed to a selective sweep of variation in the region.  相似文献   

15.
Schmegner C  Hoegel J  Vogel W  Assum G 《Genetics》2007,175(1):421-428
The human genome is composed of long stretches of DNA with distinct GC contents, called isochores or GC-content domains. A boundary between two GC-content domains in the human NF1 gene region is also a boundary between domains of early- and late-replicating sequences and of regions with high and low recombination frequencies. The perfect conservation of the GC-content distribution in this region between human and mouse demonstrates that GC-content stabilizing forces must act regionally on a fine scale at this locus. To further elucidate the nature of these forces, we report here on the spectrum of human SNPs and base pair substitutions between human and chimpanzee. The results show that the mutation rate changes exactly at the GC-content transition zone from low values in the GC-poor sequences to high values in GC-rich ones. The GC content of the GC-poor sequences can be explained by a bias in favor of GC > AT mutations, whereas the GC content of the GC-rich segment may result from a fixation bias in favor of AT > GC substitutions. This fixation bias may be explained by direct selection by the GC content or by biased gene conversion.  相似文献   

16.
Mating systems and recombination are thought to have a deep impact on the organization and evolution of genomes. Because of the decline in effective population size and the interference between linked loci, the efficacy of selection is expected to be reduced in regions with low recombination rates and in the whole genome of self-fertilizing species. At the molecular level, relaxed selection is expected to result in changes in the rate of protein evolution and the pattern of codon bias. It is increasingly recognized that recombination also affects non-selective processes such as the biased gene conversion towards GC alleles (bGC). Like selection, this kind of meiotic drive in favour of GC over AT alleles is expected to be reduced in weakly recombining regions and genomes. Here, we investigated the effect of mating system and recombination on molecular evolution in four Triticeae species: two outcrossers (Secale cereale and Aegilops speltoides) and two selfers (Triticum urartu and Triticum monococcum). We found that GC content, possibly driven by bGC, is affected by mating system and recombination as theoretically predicted. Selection efficacy, however, is only weakly affected by mating system and recombination. We investigated the possible reasons for this discrepancy. A surprising one is that, in outcrossing lineages, selection efficacy could be reduced because of high substitution rates in favour of GC alleles. Outcrossers, but not selfers, would thus suffer from a 'GC-induced' genetic load. This result sheds new light on the evolution of mating systems.  相似文献   

17.
Comparison of the human and mouse genomes has revealed that significant variations in evolutionary rates exist among genomic regions and that a large part of this variation is interchromosomal. We confirm in this work, using a large collection of introns, that human chromosome 19 is the one that shows the highest divergence with respect to mouse. To search for other differences among chromosomes, we examine the distribution of gene functions in human and mouse chromosomes using the Gene Ontology definitions. We found by correspondence analysis that among the strongest clusterings of gene functions in human chromosomes is a group of genes coding for DNA binding proteins in chromosome 19. Interestingly, chromosome 19 also has a very high GC content, a feature that has been proposed to promote an opening of the chromatin, thereby facilitating binding of proteins to the DNA helix. In the mouse genome, however, a similar aggregation of genes coding for DNA binding proteins and high GC content cannot be found. This suggests that the distribution of genes coding for DNA binding proteins and the variations of the chromatin accessibility to these proteins are different in the human and mouse genomes. It is likely that the overall high synonymous and intron rates in chromosome 19 are a by-product of the high GC content of this chromosome.Department of Physiology and Molecular Biodiversity, Institut de Biologia Molecular de Barcelona, CSIC, Jordi Girona 18, 08034 Barcelona, Spain  相似文献   

18.
Homologous meiotic recombination occurs in most sexually reproducing organisms, yet its evolutionary advantages are elusive. Previous research explored recombination in the honeybee, a eusocial hymenopteran with an exceptionally high genome-wide recombination rate. A comparable study in a non-social member of the Hymenoptera that would disentangle the impact of sociality from Hymenoptera-specific features such as haplodiploidy on the evolution of the high genome-wide recombination rate in social Hymenoptera is missing. Utilizing single-nucleotide polymorphisms (SNPs) between two Nasonia parasitoid wasp genomes, we developed a SNP genotyping microarray to infer a high-density linkage map for Nasonia. The map comprises 1,255 markers with an average distance of 0.3 cM. The mapped markers enabled us to arrange 265 scaffolds of the Nasonia genome assembly 1.0 on the linkage map, representing 63.6% of the assembled N. vitripennis genome. We estimated a genome-wide recombination rate of 1.4–1.5 cM/Mb for Nasonia, which is less than one tenth of the rate reported for the honeybee. The local recombination rate in Nasonia is positively correlated with the distance to the center of the linkage groups, GC content, and the proportion of simple repeats. In contrast to the honeybee genome, gene density in the parasitoid wasp genome is positively associated with the recombination rate; regions of low recombination are characterized by fewer genes with larger introns and by a greater distance between genes. Finally, we found that genes in regions of the genome with a low recombination frequency tend to have a higher ratio of non-synonymous to synonymous substitutions, likely due to the accumulation of slightly deleterious non-synonymous substitutions. These findings are consistent with the hypothesis that recombination reduces interference between linked sites and thereby facilitates adaptive evolution and the purging of deleterious mutations. Our results imply that the genomes of haplodiploid and of diploid higher eukaryotes do not differ systematically in their recombination rates and associated parameters.  相似文献   

19.
黄建峰  李朗  李捷 《植物学报》2016,51(5):609-619
对樟科樟属(Cinnamomum Schaeffer) 17个代表样本的核糖体DNA内转录间隔区(nrDNA ITS)进行克隆测序。对获得的87条不同ITS序列的长度变异、GC含量、5.8S区二级结构的稳定性、遗传距离、进化模式以及系统发育关系进行了相关分析。研究结果显示, ITS序列在樟属植物内存在明显的多态性, 87条序列中的22条序列被鉴定为假基因序列, 其余65条序列为功能基因序列; 假基因序列采用中性进化模式, 变异明显大于功能序列。ITS序列在樟属植物中出现一致性进化不完全和假基因现象也可能发生在樟科其它类群中, 这可能是导致樟科植物ITS序列直接测序方式成功率低的重要原因。  相似文献   

20.
The major source of immunoglobulin diversity is variation in DNA sequence among multiple copies of variable region (V) genes of the heavy- and light-chain multigene families. In order to clarify the evolutionary pattern of the multigene family of immunoglobulin light kappa chain V region (V kappa) genes, phylogenetic analyses of V kappa genes from humans and other vertebrate species were conducted. The results obtained indicate that the V kappa genes so far sequenced can be grouped into three major monophyletic clusters, the cartilaginous fish, bony fish and amphibian, and mammalian clusters, and that the cartilaginous fish cluster first separated from the rest of the V kappa genes and then the remaining two clusters diverged. The mammalian V kappa genes can further be divided into 10 V kappa groups, 7 of which are present in the human genome. Human and mouse V kappa genes from different V kappa groups are intermingled rather than clustered on the chromosome, and there are a large number of pseudogenes scattered on the chromosome. This indicates that the chromosomal locations of V kappa genes have been shuffled many times by gene duplication, deletion, and transposition in the evolutionary process and that many genes have become nonfunctional during this process. This mode of evolution is consistent with the model of birth-and-death evolution rather than with the model of concerted evolution. An analysis of duplicate V kappa functional genes and pseudogenes in the human genome has indicated that pseudogenes evolve faster than functional genes but that the rate of nonsynonymous nucleotide substitution in the complementarity-determining regions of V kappa genes has been enhanced by positive Darwinian selection.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号