首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A dynamic computer model of oxidative phosphorylation in intact heart was developed by modifying the model of oxidative phosphorylation in intact skeletal muscle published previously. Next, this model was used for theoretical studies on the regulation of oxidative phosphorylation in intact heart in vivo during transition between different work intensities. It is shown that neither a direct activation of ATP usage alone nor a direct activation of both ATP usage and substrate dehydrogenation, including the calcium-activated tricarboxylate acid cycle dehydrogenases, can account for the constancy of [ADP], [PCr], [P(i)] and [NADH] during a significant increase in oxygen consumption and ATP turnover encountered in intact heart in vivo. Only a direct activation of all oxidative phosphorylation complexes in parallel with a stimulation of ATP usage and substrate dehydrogenation enabled to reproduce the experimental data concerning the constancy of metabolite concentrations. The molecular background of the differences between heart and skeletal muscle in the kinetic behaviour of the oxidative phosphorylation system is also discussed.  相似文献   

2.
Steady-state metabolite (ADP, ATP, P(i), PCr, and NADH) concentrations usually differ little between different workloads with significantly different oxygen consumption rates in the heart. However, during transitions between steady states, metabolite concentrations may in some cases change transiently, exhibiting a significant overshoot or undershoot, whereas in other cases they approach near-exponentially new steady-state values. Oxygen consumption rate usually reaches the new steady-state value very quickly (within a few seconds). The present in silico studies, performed using a previously developed computer model of oxidative phosphorylation in the heart, demonstrate that such a behavior of the oxidative phosphorylation system can be reproduced only under the assumption that ATP usage, substrate dehydrogenation, and (particular steps of) oxidative phosphorylation are directly activated to a similar extend by some cytosolic factor/mechanism during transition from low work to high work (the so-called parallel-activation mechanism). Computer simulations show that some differences observed between different experimental systems can be explained by a slightly different balance of the activation of particular components of the system and/or by a delay in time of the activation/inactivation of substrate dehydrogenation and oxidative phosphorylation during low-to-high and high-to-low work transitions. Thus the presented theoretical approach offers a general idea that is able to unify, at least semiquantitatively, different experimental data available in the literature.  相似文献   

3.
During low-to-high work transition in adult mammalian heart in vivo the concentrations of free ADP, ATP, PCr (phosphocreatine), P(i) and NADH are essentially constant, in striking contrast with skeletal muscle. The direct activation by calcium ions of ATP usage and feedback activation of ATP production by ADP (and P(i)) alone cannot explain this perfect homoeostasis. A comparison of the response to adrenaline (increase in rate-pressure product and [PCr]) of the intact beating perfused rat heart with the elasticities of the PCr producer and consumer to PCr concentration demonstrated that both the ATP/PCr-producing block and ATP/PCr-consuming block are directly activated to a similar extent during physiological heart activation. Our finding constitutes a direct evidence for the parallel-activation mechanism of the regulation of oxidative phosphorylation in heart postulated previously in a theoretical way.  相似文献   

4.
At the onset of a square-wave exercise of moderate intensity, in the absence of any detectable lactate production, the hydrolysis of phosphocreatine (PCr) fills the gap between energy requirement and energy yield by oxidative pathways, thus representing a readily available source of energy for the muscle. We verified experimentally the relationships between high-energy phosphates and/or their changes and the time constant of PCr concentration ([PCr]) kinetics in humans (tau(PCr)). High-energy phosphate concentration (by (31)P-NMR spectroscopy) in the calf muscles were measured during three repetitions of the rest-to-work transition of moderate aerobic square-wave exercise on nine healthy volunteers, while resting [PCr] was estimated from the appropriate spectroscopy data. PCr concentration decreased significantly (22 +/- 6%) from rest to steady-state exercise, without differences among the three repetitions. Absolute resting [PCr] and tau(PCr) were consistent with literature values, amounting to 27.5 +/- 2.2 mM and 23.9 +/- 2.9 s, respectively. No significant relationships were detected between individual tau(PCr) and mechanical power, fraction or absolute amount of PCr hydrolyzed, or change in ADP concentration. On the contrary, individual tau(PCr) (s) was linearly related to absolute resting [PCr] (mM), the relationship being described by: tau(PCr) = 0.656 + 0.841.[PCr] (n = 9, R = 0.708, P < 0.05). These data support the view that in humans PCr concentration sets the time course of the oxidative metabolism in skeletal muscle at the start of exercise, being one of the main controllers of oxidative phosphorylation.  相似文献   

5.
Net phosphocreatine (PCr) resynthesis during muscle contraction is a paradoxical phenomenon because it occurs under conditions of high energy demand. The metabolic underpinnings of this phenomenon were analyzed non-invasively using 31P-magnetic resonance spectroscopy in rat gastrocnemius muscle (n=11) electrically stimulated (7.6 Hz, 6 min duration) in situ under ischemic and normoxic conditions. During ischemic stimulation, [PCr] initially fell to a steady state (9+/-5% of resting concentration) which was maintained for the last 5 min of stimulation, whereas isometric force production decreased to a non-measurable level beyond 3 min. Throughout normoxic stimulation, [PCr] and force production declined to a steady state after respectively 1 min (5+/-3% of resting concentration) and 3.25 min (21+/-8% of initial value) of stimulation. Contrary to the observations under ischemia, a paradoxical net PCr resynthesis was recorded during the last 2 min of normoxic stimulation and was not accompanied by any improvement in force production. These results demonstrate that the paradoxical net PCr resynthesis recorded in contracting muscle relies exclusively on oxidative energy production and could occur in inactivated fibers, similarly to PCr resynthesis during post-exercise recovery.  相似文献   

6.
Net phosphocreatine (PCr) resynthesis during muscle contraction is a paradoxical phenomenon because it occurs under conditions of high energy demand. The metabolic underpinnings of this phenomenon were analyzed non-invasively using 31P-magnetic resonance spectroscopy in rat gastrocnemius muscle (n=11) electrically stimulated (7.6 Hz, 6 min duration) in situ under ischemic and normoxic conditions. During ischemic stimulation, [PCr] initially fell to a steady state (9±5% of resting concentration) which was maintained for the last 5 min of stimulation, whereas isometric force production decreased to a non-measurable level beyond 3 min. Throughout normoxic stimulation, [PCr] and force production declined to a steady state after respectively 1 min (5±3% of resting concentration) and 3.25 min (21±8% of initial value) of stimulation. Contrary to the observations under ischemia, a paradoxical net PCr resynthesis was recorded during the last 2 min of normoxic stimulation and was not accompanied by any improvement in force production. These results demonstrate that the paradoxical net PCr resynthesis recorded in contracting muscle relies exclusively on oxidative energy production and could occur in inactivated fibers, similarly to PCr resynthesis during post-exercise recovery.  相似文献   

7.
Cellularenergy balance requires that the physiological demands by ATP-utilizingfunctions be matched by ATP synthesis to sustain muscle activity. Wedevised a new method of analysis of these processes in data from singleindividuals. Our approach is based on the logic of current informationon the major mechanisms involved in this energy balance and canquantify not directly measurable parameters that govern thosemechanisms. We use a mathematical model that simulates by ordinary,nonlinear differential equations three components of cellularbioenergetics (cellular ATP flux, mitochondrial oxidativephosphorylation, and creatine kinase kinetics). We incorporate dataunder resting conditions, during the transition toward a steady stateof stimulation and during the transition during recovery back to theoriginal resting state. Making use of prior information about thekinetic parameters, we fitted the model to previously published dynamicphosphocreatine (PCr) and inorganic phosphate (Pi) dataobtained in normal subjects with an activity-recovery protocol using31P nuclear magnetic resonance spectroscopy. The experimentconsisted of a baseline phase, an ischemic phase (during which musclestimulation and PCr utilization occurred), and an aerobic recoveryphase. The model described satisfactorily the kinetics of the changes in PCr and Pi and allowed estimation of the maximalvelocity of oxidative phosphorylation and of the net ATP flux inindividuals both at rest and during stimulation. This work lays thefoundation for a quantitative, model-based approach to the study of invivo muscle energy balance in intact muscle systems, including human muscle.

  相似文献   

8.
It is generally assumed that men display greater strength and muscle capacity than women. However, previous biochemical and histological studies have shown that men have greater capacity for anaerobic metabolism and women have higher or similar oxidative metabolism. Therefore, in the present study, we estimated oxidative capacity of gastrocnemius muscle and compared in Indian men and women using non-invasive in vivo 31P magnetic resonance spectroscopy (MRS). Healthy subjects (8 young males and 9 females, age-matched) performed plantar flexion exercise within a magnet and MRS measurements of inorganic phosphate (Pi), phosphocreatine (PCr), ADP, and pH of the calf muscles were carried out using a 1.5 T whole-body MRI system. PCr values during recovery were fitted to an exponential curve, and oxidative capacity was calculated using rate constant (k(PCr)), as an index of oxidative phosphorylation. When men and women were compared for different metabolic ratios, ADP, pH, k(PCr) and oxidative capacity, all parameters turned out to be statistically insignificant. The results showed no gender effect on skeletal muscle oxidative metabolism. The study demonstrated the usefulness of such non-invasive method to indirectly measure the oxidative capacity of the muscle based on PCr recovery.  相似文献   

9.
Previous studies have suggested the recovery of phosphocreatine (PCr) after exercise is at least second-order in some conditions. Possible explanations for higher-order PCr recovery kinetics include heterogeneity of oxidative capacity among skeletal muscle fibers and ATP production via glycolysis contributing to PCr resynthesis. Ten human subjects (28 +/- 3 yr; mean +/- SE) performed gated plantar flexion exercise bouts consisting of one contraction every 3 s for 90 s (low-intensity) and three contractions every 3 s for 30 s (high-intensity). In a parallel gated study, the sciatic nerve of 15 adult male Sprague-Dawley rats was electrically stimulated at 0.75 Hz for 5.7 min (low intensity) or 5 Hz for 2.1 min (high intensity) to produce isometric contractions of the posterior hindlimb muscles. [(31)P]-MRS was used to measure relative [PCr] changes, and nonnegative least-squares analysis was utilized to resolve the number and magnitude of exponential components of PCr recovery. Following low-intensity exercise, PCr recovered in a monoexponential pattern in humans, but a higher-order pattern was typically observed in rats. Following high-intensity exercise, higher-order PCr recovery kinetics were observed in both humans and rats with an initial fast component (tau < 15 s) resolved in the majority of humans (6/10) and rats (5/8). These findings suggest that heterogeneity of oxidative capacity among skeletal muscle fibers contributes to a higher-order pattern of PCr recovery in rat hindlimb muscles but not in human triceps surae muscles. In addition, the observation of a fast component following high-intensity exercise is consistent with the notion that glycolytic ATP production contributes to PCr resynthesis during the initial stage of recovery.  相似文献   

10.
Adipose triglyceride lipase (ATGL) is a lipolytic enzyme that is highly specific for triglyceride hydrolysis. The ATGL-knockout mouse (ATGL(-/-)) accumulates lipid droplets in various tissues, including skeletal muscle, and has poor maximal running velocity and endurance capacity. In this study, we tested whether abnormal lipid accumulation in skeletal muscle impairs mitochondrial oxidative phosphorylation, and hence, explains the poor muscle performance of ATGL(-/-) mice. In vivo 1H magnetic resonance spectroscopy of the tibialis anterior of ATGL(-/-) mice revealed that its intramyocellular lipid pool is approximately sixfold higher than in WT controls (P = 0.0007). In skeletal muscle of ATGL(-/-) mice, glycogen content was decreased by 30% (P < 0.05). In vivo 31P magnetic resonance spectra of resting muscles showed that WT and ATGL(-/-) mice have a similar energy status: [PCr], [P(i)], PCr/ATP ratio, PCr/P(i) ratio, and intracellular pH. Electrostimulated muscles from WT and ATGL(-/-) mice showed the same PCr depletion and pH reduction. Moreover, the monoexponential fitting of the PCr recovery curve yielded similar PCr recovery times (τPCr; 54.1 ± 6.1 s for the ATGL(-/-) and 58.1 ± 5.8 s for the WT), which means that overall muscular mitochondrial oxidative capacity was comparable between the genotypes. Despite similar in vivo mitochondrial oxidative capacities, the electrostimulated muscles from ATGL(-/-) mice displayed significantly lower force production and increased muscle relaxation time than the WT. These findings suggest that mechanisms other than mitochondrial dysfunction cause the impaired muscle performance of ATGL(-/-) mice.  相似文献   

11.
It has been postulated previously that a direct activation of all oxidative phosphorylation complexes in parallel with the activation of ATP usage and substrate dehydrogenation (the so-called each-step activation) is the main mechanism responsible for adjusting the rate of ATP production by mitochondria to the current energy demand during rest-to-work transition in intact skeletal muscle in vivo. The present in silico study, using a computer model of oxidative phosphorylation developed previously, analyzes the impact of the each-step-activation mechanism on the distribution of control (defined within Metabolic Control Analysis) over the oxygen consumption flux among the components of the bioenergetic system in intact oxidative skeletal muscle at different energy demands. It is demonstrated that in the absence of each-step activation, the oxidative phosphorylation complexes take over from ATP usage most of the control over the respiration rate and oxidative ATP production at higher (but still physiological) energy demands. This leads to a saturation of oxidative phosphorylation, impossibility of a further acceleration of oxidative ATP synthesis, and dramatic drop in the phosphorylation potential. On the other hand, the each-step-activation mechanism allows maintenance of a high degree of the control exerted by ATP usage over the ATP turnover and oxygen consumption flux even at high energy demands and thus enables a potentially very large increase in ATP turnover. It is also shown that low oxygen concentration shifts the metabolic control from ATP usage to cytochrome oxidase and thus limits the oxidative ATP production. respiration rate; parallel activation; oxidative phosphorylation; metabolic control analysis; flux control coefficient; muscle contraction  相似文献   

12.
Understanding muscle energetics is a problem in optimizing supply of ATP to the demands of ATPases. The complexity of reactions and their fluxes to achieve this balance is greatly reduced by recognizing constraints imposed by the integration of common metabolites at fixed stoichiometry among modular units. ATPase is driven externally. Oxidative phosphorylation and glycogenolysis are the suppliers. We focus on their regulation which involves different controls, but reduces to two principles that enable facile experimental analysis of the supply and demand fluxes. The ratio of concentration of phosphocreatine (PCr) to ATP, not their individual values, sets the range of achievable concentrations of ADP in resting and active muscle (at fixed pH) in different cell types. This principle defines the fraction of available flux of oxidative phosphorylation utilized (at fixed enzyme activities). Then the kinetics of PCr recovery defines the kinetics of oxygen supply and substrate utilization. The second principle is the constancy of PCr and H(+) (lactate) production by glycogenolysis due to the coupling of ATPase and glycolysis. This principle enables glycogenolytic flux to be measured from intracellular proton loads. Further simplification occurs because the magnitude of the interacting fluxes and metabolite concentrations are specified within narrow limits when both the resting and active fluxes are quantified. Thus there is a small set of rules for assessing and understanding the thermodynamics and kinetics of muscle energetics.  相似文献   

13.
Energy for muscle contractions is supplied by ATP generated from 1) the net hydrolysis of phosphocreatine (PCr) through the creatine kinase reaction, 2) oxidative phosphorylation, and 3) anaerobic glycolysis. The effect of old age on these pathways is unclear. The purpose of this study was to examine whether age may affect ATP synthesis rates from these pathways during maximal voluntary isometric contractions (MVIC). Phosphorus magnetic resonance spectroscopy was used to assess high-energy phosphate metabolite concentrations in skeletal muscle of eight young (20-35 yr) and eight older (65-80 yr) men. Oxidative capacity was assessed from PCr recovery after a 16-s MVIC. We determined the contribution of each pathway to total ATP synthesis during a 60-s MVIC. Oxidative capacity was similar across age groups. Similar rates of ATP synthesis from PCr hydrolysis and oxidative phosphorylation were observed in young and older men during the 60-s MVIC. Glycolytic flux was higher in young than older men during the 60-s contraction (P < 0.001). When expressed relative to the overall ATP synthesis rate, older men relied on oxidative phosphorylation more than young men (P = 0.014) and derived a smaller proportion of ATP from anaerobic glycolysis (P < 0.001). These data demonstrate that although oxidative capacity was unaltered with age, peak glycolytic flux and overall ATP production from anaerobic glycolysis were lower in older men during a high-intensity contraction. Whether this represents an age-related limitation in glycolytic metabolism or a preferential reliance on oxidative ATP production remains to be determined.  相似文献   

14.
BACKGROUND: It has been thought that intramuscular ADP and phosphocreatine (PCr) concentrations are important regulators of mitochondorial respiration. There is a threshold work rate or metabolic rate for cellular acidosis, and the decrease in muscle PCr is accelerated with drop in pH during incremental exercise. We tested the hypothesis that increase in muscle oxygen consumption (o2mus) is accelerated with rapid decrease in PCr (concomitant increase in ADP) in muscles with drop in pH occurs during incremental plantar flexion exercise. METHODS: Five male subjects performed a repetitive intermittent isometric plantar flexion exercise (6-s contraction/4-s relaxation). Exercise intensity was raised every 1 min by 10% maximal voluntary contraction (MVC), starting at 10% MVC until exhaustion. The measurement site was at the medial head of the gastrocnemius muscle. Changes in muscle PCr, inorganic phosphate (Pi), ADP, and pH were measured by 31P-magnetic resonance spectroscopy. o2mus was determined from the rate of decrease in oxygenated hemoglobin and/or myoglobin using near-infrared continuous wave spectroscopy under transient arterial occlusion. Electromyogram (EMG) was also recorded. Pulmonary oxygen uptake (o2pul ) was measured by the breath-by-breath gas analysis. RESULTS: EMG amplitude increased as exercise intensity progressed. In contrast, muscle PCr, ADP, o2mus, and o2pul did not change appreciably below 40% MVC, whereas above 40% MVC muscle PCr decreased, and ADP, o2mus, and o2pul increased as exercise intensity progressed, and above 70% MVC, changes in muscle PCr, ADP, o2mus, and o2pul accelerated with the decrease in muscle pH (~6.78). The kinetics of muscle PCr, ADP, o2mus, and o2pul were similar, and there was a close correlation between each pair of parameters (r = 0.969~0.983, p < 0.001). CONCLUSION: With decrease in pH muscle oxidative metabolism accelerated and changes in intramuscular PCr and ADP accelerated during incremental intermittent isometric plantar flexion exercise. These results suggest that rapid changes in muscle PCr and/or ADP with mild acidosis stimulate accelerative muscle oxidative metabolism.  相似文献   

15.
31P NMR spectroscopy at 4.7 T has been used to follow changes in phosphorylated metabolites and pHi in the flexor digitorum superficialis muscle of 15 healthy volunteers subjected to a rest-exercise-recovery protocol. Phosphomonoesters (Pme) increased during exercise and exhibited a delayed recovery to resting level. During early recovery, Pi fell below resting concentration without correlated PCr oversynthesis while Pme level stayed above its resting value. The sum Pi + Pme remained constant. These observations suggest that Pi could be trapped into the glycogenolytic pathway during exercise leading to Pme production. This trapping and the slow Pme recovery could account for transient Pi disappearance observed during recovery.  相似文献   

16.
A dynamic computer model of oxidative phosphorylation in oxidative mammalian skeletal muscle was developed. The previously published model of oxidative phosphorylation in isolated skeletal muscle mitochondria was extended by incorporation of the creatine kinase system (creatine kinase plus phosphocreatine/creatine pair), cytosolic proton production/consumption system (proton production/consumption by the creatine kinase-catalysed reaction, efflux/influx of protons), physiological size of the adenine nucleotide pool and some additional minor changes. Theoretical studies performed by means of the extended model demonstrated that the CK system, which allows for large changes in P(i) in relation to isolated mitochondria system, has no significant influence on the kinetic properties of oxidative phosphorylation, as inorganic phosphate only slightly modifies the relationship between the respiration rate and [ADP]. Computer simulations also suggested that the second-order dependence of oxidative phosphorylation on [ADP] proposed in the literature refers only to the ATP synthesis flux, but not to the oxygen consumption flux (the difference between these two fluxes being due to the proton leak). Next, time courses of changes in fluxes and metabolite concentrations during transition between different steady-states were simulated. The model suggests, in accordance with previous theoretical predictions, that activation of oxidative phosphorylation by an increase in [ADP] can (roughly) explain the behaviour of the system only at low work intensities, while at higher work intensities parallel activation of different steps of oxidative phosphorylation is involved.  相似文献   

17.
Severe hypoxia exposure and exhaustive exercise in goldfish both elicit a strong activation of substrate-level phosphorylation with the majority of the metabolic perturbations occurring in the white muscle. Approximately half of the muscle glycogen breakdown observed during severe hypoxia exposure was accounted for by ethanol production and loss to the environment, which limited the extent of muscle glycogen recovery when animals were returned to normoxic conditions. Ethanol production in goldfish is not solely a response to anoxia/hypoxia exposure however, as a transient increase in ethanol production was observed during the early stages of recovery from exhaustive exercise. These data suggest that ethanol production is a ubiquitous "anaerobic" end product, which accumulates whenever metabolic demands exceed mitochondrial oxidative potential. Exhaustive exercise and hypoxia exposure both caused a 7 to 8 micromol g(-1) wet mass increase in muscle [lactate] and the rates of recovery following these perturbations were similar. The rates of muscle PCr and pHi recovery after hypoxia exposure and exhaustive exercise were similar with levels returning to controls values within 0.5 h. Surprisingly, liver [glycogen] was not depleted during exposure to severe hypoxia, however, during recovery from both hypoxia and exercise dramatically different responses in liver [glycogen] were noted. During the early stages of recovery, liver [glycogen] transiently increased to high levels after exhaustive exercise, while during recovery from hypoxia there was a transient decrease in liver glycogen over the same time frame. Overall, this points to the liver playing a dramatically different role in facilitating recovery from exercise compared with hypoxia exposure.  相似文献   

18.
In skeletal muscle, phosphocreatine (PCr) recovery from submaximal exercise has become a reliable and accepted measure of muscle oxidative capacity. During exercise, O2 availability plays a role in determining maximal oxidative metabolism, but the relationship between O2 availability and oxidative metabolism measured by 31P-magnetic resonance spectroscopy (MRS) during recovery from exercise has never been studied. We used 31P-MRS to study exercising human gastrocnemius muscle under conditions of varied fractions of inspired O2 (FIO2) to test the hypothesis that varied O2 availability modulates PCr recovery from submaximal exercise. Six male subjects performed three bouts of 5-min steady-state submaximal plantar flexion exercise followed by 5 min of recovery in a 1.5-T magnet while breathing three different FIO2 concentrations (0.10, 0. 21, and 1.00). Under each FIO2 treatment, the PCr recovery time constants were significantly different, being longer in hypoxia [33. 5 +/- 4.1 s (SE)] and shorter in hyperoxia (20.0 +/- 1.8 s) than in normoxia (25.0 +/- 2.7 s) (P 相似文献   

19.
NO and O(2) compete at cytochrome-c oxidase, thus potentially allowing NO to modulate mitochondrial respiration. We previously observed a decrease of myocardial phosphocreatine (PCr)/ATP during very high cardiac work states, corresponding to an increase in cytosolic free ADP. This study tested the hypothesis that NO inhibition of respiration contributes to this increase of ADP. Infusion of dobutamine + dopamine (DbDp, each 20 microg.kg(-1).min(-1) iv) to more than double myocardial oxygen consumption (MVo(2)) in open-chest dogs caused a decrease of myocardial PCr/ATP measured with (31)P NMR from 2.04 +/- 0.09 to 1.85 +/- 0.08 (P < 0.05). Inhibition of NO synthesis with N(omega)-nitro-L-arginine (L-NNA), while catecholamine infusion continued, caused PCr/ATP to increase to the control value. In a second group of animals, L-NNA administered before catecholamine stimulation (reverse intervention of the first group) increased PCr/ATP during basal conditions. In these animals L-NNA did not prevent a decrease of PCr/ATP at the high cardiac work state but, relative to MVo(2), PCr/ATP was significantly higher after L-NNA. In a third group of animals, pharmacological coronary vasodilation with carbochromen was used to prevent changes in coronary flow that might alter endothelial NO production. In these animals L-NNA again restored depressed myocardial PCr/ATP during catecholamine infusion. The finding that inhibition of NO production increased PCr/ATP suggests that during very high work states NO inhibition of mitochondrial respiration requires ADP to increase to drive oxidative phosphorylation.  相似文献   

20.
Regulation of oxidative phosphorylation through parallel activation   总被引:2,自引:0,他引:2  
When the mechanical work intensity in muscle increases, the elevated ATP consumption rate must be matched by the rate of ATP production by oxidative phosphorylation in order to avoid a quick exhaustion of ATP. The traditional mechanism of the regulation of oxidative phosphorylation, namely the negative feedback involving [ADP] and [Pi] as regulatory signals, is not sufficient to account for various kinetic properties of the system in intact skeletal muscle and heart in vivo. Theoretical studies conducted using a dynamic computer model of oxidative phosphorylation developed previously strongly suggest the so-called each-step-activation (or parallel activation) mechanism, due to which all oxidative phosphorylation complexes are directly activated by some cytosolic factor/mechanism related to muscle contraction in parallel with the activation of ATP usage and substrate dehydrogenation by calcium ions. The present polemic article reviews and discusses the growing evidence supporting this mechanism and compares it with alternative mechanisms proposed in the literature. It is concluded that only the each-step-activation mechanism is able to explain the rich set of various experimental results used as a reference for estimating the validity and applicability of particular mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号