首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Fluorescence is typically isotropic in space and collected with low efficiency. In this paper we describe surface plasmon-coupled emission (SPCE), which displays unique optical properties and can be collected with an efficiency near 50%. SPCE occurs for fluorophores within about 200 nm of a thin metallic film, in our case a 50-nm-thick silver film on a glass substrate. We show that fluorophore proximity to this film converts the normally isotropic emission into highly directional emission through the glass substrate at a well-defined angle from the normal axis. Depending on the thickness of the polyvinyl alcohol (PVA) film on the silver, the coupling efficiency of sulforhodamine 101 in PVA ranged from 30 to 49%. Directional SPCE was observed whether the fluorophore was excited directly or by the evanescent field due to the surface plasmon resonance. The emission is always polarized perpendicular to the plane of incidence, irrespective of the polarization of the incident light. The lifetimes are not substantially changed, indicating a mechanism somewhat different from that observed previously for the effects of silver particles on fluorophores. Remarkably, the directional emission shows intrinsic spectral resolution because the coupling angles depend on wavelength. The distances over which SPCE occurs, 10 to 200 nm, are useful because a large number of fluorophores can be localized within this volume. The emission of more distant fluorophores does not couple into the glass, allowing background suppression from biological samples. SPCE can be expected to become rapidly useful in a variety of analytical and medical sensing applications.  相似文献   

2.
A new method of fluorescence detection that promises to increase sensitivity by 20- to 1000-fold is described. This method will also decrease the contribution of sample autofluorescence to the detected signal. The method depends on the coupling of excited fluorophores with the surface plasmon resonance present in thin metal films, typically silver and gold. The phenomenon of surface plasmon-coupled emission (SPCE) occurs for fluorophores 20-250 nm from the metal surface, allowing detection of fluorophores over substantial distances beyond the metal-sample interface. SPCE depends on interactions of the excited fluorophore with the metal surface. This interaction is independent of the mode of excitation; that is, it does not require evanescent wave or surface-plasmon excitation. In a sense, SPCE is the inverse process of the surface plasmon resonance absorption of thin metal films. Importantly, SPCE occurs over a narrow angular distribution, converting normally isotropic emission into easily collected directional emission. Up to 50% of the emission from unoriented samples can be collected, much larger than typical fluorescence collection efficiencies near 1% or less. SPCE is due only to fluorophores near the metal surface and may be regarded as emission from the induced surface plasmons. Autofluorescence from more distal parts of the sample is decreased due to decreased coupling. SPCE is highly polarized and autofluorescence can be further decreased by collecting only the polarized component or only the light propagating with the appropriate angle. Examples showing how simple optical configurations can be used in diagnostics, sensing, or biotechnology applications are presented. Surface plasmon-coupled emission is likely to find widespread applications throughout the biosciences.  相似文献   

3.
We describe a new approach to fluorescence sensing based on measurements of steady-state anisotropies in the presence of reference fluorophores with known anisotropies. The basic concept is that the anisotropy of a mixture reflects a weighted average of the anisotropies of the emitting species. By use of reference fluorophores the starting anisotropy can be near zero, or near 0.9 for oriented films which contain the reference fluorophore. Changing intensities of the analyte result in changes in anisotropy. A wide dynamic range of anisotropies is available because of the freedom to select high or low starting values. Anisotropy-based sensing was demonstrated for pH using 6-carboxyfluorescein and for protein affinity or immunoassay using an oriented film with high anisotropy and a protein labeled with a metal-ligand complex. The latter measurements were performed with a simple light-emitting diode excitation source without an excitation polarizer. The sensitive range of the assay can be adjusted by changing the intensity of the reference fluorophore. Anisotropy-based sensing can have numerous applications in clinical and analytical chemistry.  相似文献   

4.
M Irving 《Biophysical journal》1996,70(4):1830-1835
Steady-state fluorescence polarization measurements provide a relatively simple method for investigating the orientation of molecular components in ordered biological systems. However, the observed fluorescence polarization ratios also depend on any mobility of the fluorophores on the time scale of the fluorescence lifetime. Such mobility commonly arises from incomplete immobilization of a fluorescent probe on the macromolecule of interest. A theoretical formalism is presented for the interpretation of steady-state fluorescence polarization ratios in the presence of such rapid fluorophore motion. It is assumed that the fluorophores move freely within a cone between absorption and emission of a photon. Only one new parameter is introduced to describe fluorophore motion, the semi-angle of the cone, and this can be measured in separate experiments on an isotropic system. The fluorophore orientations are assumed to have cylindrical symmetry, but the symmetry axis need not be in the same plane as the center axes of the absorption and emission cones. This geometry applies to muscle and other biological fibers.  相似文献   

5.
We describe two new methods of fluorescence sensing for use in high throughput screening (HTS). Modulation sensing transforms analyte-dependent intensity changes into a change in the low-frequency modulation signal. Polarization sensing transforms an intensity change into a change in polarization. Both methods are internally calibrated by using a reference film immediately adjacent to the sample, which can be readily located on the HTS plate or on a nearby optical component and provides an intensity or polarization reference. Modulation sensing and polarization sensing were both shown useful for measurements of fluorophore concentrations, pH, or calcium concentrations in the wells of HTS plates. Sensing with a reference film provides the opportunity to internally reference HTS measurements without the need for additions to the sample. This approach can provide standardization for assays performed at different times.  相似文献   

6.
There is a continuing need to increase the brightness and photostability of fluorophores for use in biotechnology, medical diagnostics, and cell imaging. One approach developed during the past decade is to use metallic surfaces and nanostructures. It is now known that excited state fluorophores display interactions with surface plasmons, which can increase the radiative decay rates, modify the spatial distribution of emission, and result in directional emission. One important example is surface plasmon-coupled emission (SPCE). In this phenomenon, the fluorophores at close distances from a thin metal film, typically silver, display emission over a small range of angles into the substrate. A disadvantage of SPCE is that the emission occurs at large angles relative to the surface normal and at angles that are larger than the critical angle for the glass substrate. The large angles make it difficult to collect all of the coupled emission and have prevented the use of SPCE with high-throughput and/or array applications. In the current article, we describe a simple multilayer metal–dielectric structure that allows excitation with light that is perpendicular (normal) to the plane and provides emission within a narrow angular distribution that is normal to the plane. This structure consists of a thin silver film on top of a multilayer dielectric Bragg grating, with no nanoscale features except for the metal or dielectric layer thicknesses. Our structure is designed to support optical Tamm states, which are trapped electromagnetic modes between the metal film and the underlying Bragg grating. We used simulations with the transfer matrix method to understand the optical properties of Tamm states and localization of the modes or electric fields in the structure. Tamm states can exist with zero in-plane wavevector components and can be created without the use of a coupling prism. We show that fluorophores on top of the metal film can interact with the Tamm state under the metal film and display Tamm state-coupled emission (TSCE). In contrast to SPCE, the Tamm states can display either S or P polarization. The TSCE angle is highly sensitive to wavelength, which suggests the use of Tamm structures to provide both directional emission and wavelength dispersion. Metallic structures can modify fluorophore decay rates but also have high losses. Photonic crystals have low losses but may lack the enhanced light-induced fields near metals. The combination of plasmonic and photonic structures offers the opportunity for radiative decay engineering to design new formats for clinical testing and other fluorescence-based applications.  相似文献   

7.
The fluorescence collected from a fluorophore which is near a planar interface and is excited by a laser beam that is totally internally reflected at the interface depends on the direction of the absorption and emission transition dipole moments of the fluorophore with respect to the interface, on the distance from the fluorophore to the interface, on the angle of incidence and polarization direction of the exciting beam, and on properties of the collection optics. Expressions are derived for the excitation and subsequent emission and collection of fluorescence from a population of fluorophores near a planar interface. Presented is a general model-independent method of obtaining characteristic parameters of the spatial and orientational distribution of the population of fluorophores, from a measure of the fluorescence collected as a function of the polarization and the incidence angle of the totally internally reflected laser beam. The method is illustrated with several simulation calculations.  相似文献   

8.
We have characterized the fluorescence spectral properties of rhodamine 800 (Rh800) in plasma and blood in order to test the possibility of making clinical fluorescence measurements in whole blood without separation steps. Rh800 was used because of its absorption at red/near-infrared wavelengths away from the absorption bands of hemoglobin. We utilized the front-face illumination and detection to minimize the effects of absorption and/or scatter during measurements. The presence of Rh800 was detected in plasma and blood using steady-state fluorescence measurements. Absorption due to hemoglobin reduced the Rh800 intensity from the blood. Fluorescence lifetime measurements in plasma and blood showed that it is possible to recover lifetime parameters of Rh800 in these media. We obtained mean lifetimes of 1.90 and 1.86 ns for Rh800 in plasma and blood, respectively. Using the recently described modulation sensing method, we quantified the concentrations of Rh800 in plasma and blood. Rh800 was detected at a concentration of as low as 2 microM in both media. High anisotropy values were obtained for Rh800 in plasma and blood using steady-state and anisotropy decay measurements, implying the tight binding of this probe to the contents of these media. This binding can be exploited to monitor the concentrations of different blood components using already existing or new red-emitting probes that will be specially designed to bind to these components with high specificity. To test this possibility of direct measurements in blood, we used Rh800 to monitor albumin in the presence of red blood cells. Increase in the polarization of Rh800 as the concentration of albumin was increased in the presence of the red cells showed the feasibility of such measurements.  相似文献   

9.
基于旋转偏振角的线偏振扫描成像方法研究   总被引:4,自引:0,他引:4       下载免费PDF全文
提出一种基于旋转偏振角的新的偏振光成像方法:改变入射线偏振光偏振角和检偏角,采集样品图像系列,总结出背向散射光2个正交偏振分量的光强差关于入射线偏振光偏振角和检偏角的函数关系式.通过对模拟散射介质,猪肉脂肪,猪肉骨骼肌和牛肉骨骼肌等样品进行实验,论证了偏振差函数式中各个参数与样品光学特性之间的联系,并从中提取出2个相互独立的参数,分别表征样品的纤维方向角和光学各向异性度,从而实现对样品浅表层光学特性进行定量测量.和普通光强图像相比,用这些独立的光学信息生成不同基色的图像,能更直观明了地区分组织结构差异,具有潜在的临床医学应用价值,如成为一种皮肤疾病、皮肤损伤的检测方法.  相似文献   

10.
Over the past 15 years, fluorescence has become the dominant detection/sensing technology in medical diagnostics and biotechnology. Although fluorescence is a highly sensitive technique, where single molecules can readily be detected, there is still a drive for reduced detection limits. The detection of a fluorophore is usually limited by its quantum yield, autofluorescence of the samples and/or the photostability of the fluorophores; however, there has been a recent explosion in the use of metallic nanostructures to favorably modify the spectral properties of fluorophores and to alleviate some of these fluorophore photophysical constraints. The use of fluorophore-metal interactions has been termed radiative decay engineering, metal-enhanced fluorescence or surface-enhanced fluorescence.  相似文献   

11.
Julian Borejdo  Susan Putnam 《BBA》1977,459(3):578-595
Single skinned glycerinated muscle fibers were labelled with the fluorescent dye N-(iodoacetylamino)-1-naphthylamine-5-sulfonic acid (1,5-IAEDANS). The heavy chain of myosin (EC 3.6.1.3) was labelled predominantly when the reaction was carried out in relaxation at 0 °C. Mechanical properties of skinned fibers were little affected by labelling with the fluorophore. Rigor tension developed upon transferring native or labelled skinned fibers from relaxing to rigor solutions lacking Ca2+ was very small but could be enhanced by progressively increasing Ca2+ concentration; the rigor tension decreased with increasing sarcomere length.Polarization of fluorescence of skinned fibers reacted with 1,5-IAEDANS was measured along the line of excitation as well as at 90° to it. The mean values of parallel and perpendicular components of polarization of labelled fibers measured at 0° were close to the values obtained for native fibers irrigated with 1,5-IAEDANS-labelled heavy meromyosin, fiber “ghosts” irrigated with labelled heavy meromyosin, and oriented bundles of myofibrils reacted with the same fluorophore. Skinned fibers stretched above the rest length and then irrigated with 1,5-IAEDANS-labelled heavy meromyosin gave rise to polarized fluorescence close to the values theoretically predicted for an assembly of helically arranged fluorophores. Using 90° detection system a satisfactory fit to the theory could be obtained from single fibers labelled with 1,5-IAEDANS and measured in rigor. The angle between the fiber axis and the direction of the emission dipole of 1,5-IAEDANS attached to subfragment-1 was estimated to be near 40°.  相似文献   

12.
Wang L  Gaigalas AK  Reipa V 《BioTechniques》2005,38(1):127-132
The absorption and emission spectra were measured for Cy5 and Alexa 488 fluorophores confined on a glass surface. The data were obtained using fluorometry and spectroscopic ellipsometry. Red shifts of the surface-immobilized fluorophore absorption spectra relative to the fluorophore spectra in aqueous solution were observed using both methods. We interpret these red shifts in terms of a change in the polarizability and polarity of the effective solvent. A formula is given that can be used to estimate expected shifts in absorption and emission maxima for surface-immobilized fluorophores. Spectroscopic ellipsometry measurements provide identification of the fluorophores confined on a glass surface. These results suggest that the design of microarray detection systems should be based on the optical properties of fluorophores attached to the surface and not on the optical properties of fluorophores in solution.  相似文献   

13.
Several studies have shown that hypoxia induces alterations in the lipid membranes of many cell types. The mechanism of these changes might consist in membrane lipid peroxidation. Lipid peroxidation in erythrocytes and spleen is easily detected by measurement of the concentration of fluorescent end-products. Exposure of rats to hypoxia for various time periods induced formation of lipophilic fluorescent products both in erythrocytes and spleen. A new kind of fluorophore was found in chloroform extracts from erythrocytes with excitation maximum at 270 nm and emission maximum at 310 nm. Additionally, two minor fluorophores were observed, emitting at 360 nm and in the region of 415-440 nm. Only one type of fluorophore was detected in spleen, emitting at 445 nm after excitation at 315 nm. The concentration of fluorophores was dependent on the time of hypoxic exposure both in erythrocytes and spleen. In erythrocytes there was a decrease of the predominant fluorophore after 3 hours (54%, P < 0.05) and 21 days (54%, P < 0.05) of hypoxia in relation to normoxic controls, accompanied by changes in spectral patterns of tridimensional fluorescence spectra. There was also a significant increase in the concentration of fluorophore in spleen (to 164%, P < 0.05, after 3 h, and to 240%, P < 0.05, after 21 days). The fluorophores, both in erythrocytes and spleen, were resolved into several distinct fractions with HPLC. The presented results support the hypothesis of hypoxia-induced lipid peroxidation and create a basis for further characterization of the fluorescent products.  相似文献   

14.
Commercial chemiluminescent reagents emit across a broad portion of the electromagnetic spectrum (400–500 nm). A challenge to the use of chemiluminescence to monitor biological processes is the presence of interfering substances in the biological optical window. In the present study, longer wavelength emitting fluorophores (the organic dyes Alexa 568 and Alexa 647), and a semiconductor nanoparticle (QDOT800) were used to red‐shift the emission from commercially available 1,2‐dioxetane‐based chemiluminescent substrate reactions. By adding non‐conjugated fluorescent emitters into chemiluminescent reaction mixtures, an emission peak occurred at the predicted wavelength of the fluorescent emitter. The excitation and emission from QDOT800 was preserved in the presence of a 100 µm‐thick glass barrier separating it from the chemiluminescent reaction components. The maximum tissue phantom penetration by QDOT800 emission was 8.5 mm; in comparison, the native chemiluminescent emission at 500 nm was unable to penetrate the thinnest tissue phantom of 2.5 mm. The described method for red‐shifted emissions from chemiluminescent reactions does not require direct interaction between the chemiluminescent reaction and the fluorescent emitters. This suggests that the mechanism of chemiluminescent excitation of fluorophores and QDOT800 is not exclusive to chemiluminescence resonance energy transfer or sensitized chemiluminescence, but rather by broad energization from the native chemiluminescent emission. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
1. The primary aim of the experiments described in this article was to localize the origin of the complex fluorescence in the compound eye of flies. The eye tissue was dissected and the fluorescence from cells and cell organelles was recorded by microspectrofluorometry. Using this technique, fluorophore systems were detected in the rhabdomeres, Semper cells and corneal lenses. The fluorophore systems are photoreconvertible by UV and blue light. 2. The fluorophore systems in the rhabdomeres and Semper cells are similar. The intensity of the fluorescence from the microvilli is enhanced up to 29 X by adaptation to UV light. The enhancement is inversely related to the rhodopsin content in the microvilli, indicating that the chromophoric group of the fluorophore is not a vitamin A derivative. 3. The enhancement of the fluorescence by UV light strongly depends on pH, suggesting that the photoreconvertible fluorophore systems in the microvilli and Semper cells are photosensitive redox pigments. These redox systems are probably located in the membranes of the microvilli in the photoreceptors, and in the endoplasmic reticulum of the Semper cells, or they are coupled to filaments in the cytoskeleton of both cell types. 4. Preliminary reaction schemes for the photoreactions based on the recorded excitation and emission spectra and photokinetics were developed. A primary pigment in the microvillous structure, AR, or in organelles in the Semper cells, AS, is converted by UV light into an excited state AR* or AS*, which either relaxes to the primary pigment by photon emission, or converts into an intermediate X, which by proton uptake changes into stable products, BR or BS. Blue illumination converts BR and BS into the excited states BR* and BS*, which either relax by photon emission to BR or BS, or convert into an intermediate Y, which after deprotonation reconverts into the primary pigment AR or AS. 5. Estimation of the molecular density showed that the concentration of the fluorophore in the microvilli presumably is almost equal to maximal rhodopsin concentration. The high density suggests that the fluorophores have a specific function in transduction or adaptation of the visual process.  相似文献   

16.
In vivo optical imaging to enhance the detection of cancer during endoscopy or surgery requires a targeted fluorescent probe with high emission efficiency and high signal-to-background ratio. One strategy to accurately detect cancers is to have the fluorophore internalize within the cancer cells permitting nonbound fluorophores to be washed away or absorbed. The choice of fluorophores for this task must be carefully considered. For depth of penetration, near-infrared probes are ordinarily preferred but suffer from relatively low quantum efficiency. Although green fluorescent protein has been widely used to image tumors on internal organs in mice, green fluorescent probes are better suited for imaging the superficial tissues because of the short penetration distance of green light in tissue and the highly efficient production of signal. While the fluorescence properties of green fluorophores are well-known in vitro, less attention has been paid to their fluorescence once they are internalized within cells. In this study, the emission efficiency after cellular internalization of four common green fluorophores conjugated to avidin (Av-fluorescein, Av-Oregon green, Av-BODIPY-FL, and Av-rhodamine green) were compared after each conjugate was incubated with SHIN3 ovarian cancer cells. Using the lectin binding receptor system, the avidin-fluorophore conjugates were endocytosed, and their fluorescence was evaluated with fluorescence microscopy and flow cytometry. While fluorescein demonstrated the highest signal outside the cell, among the four fluorophores, internalized Av-rhodamine green emitted the most light from SHIN3 ovarian cancer cells both in vitro and in vivo. The internalized Av-rhodamine green complex appeared to localize to the endoplasmic vesicles. Thus, among the four common green fluorescent dyes, rhodamine green is the brightest green fluorescence probe after cellular internalization. This information could have implications for the design of tumor-targeted fluorescent probes that rely on cellular internalization for cancer detection.  相似文献   

17.
The fluorophore, N(iodoacetylamino)-1-naphthylamine-5-sulfonic acid (1,5-IAEDANS), incubated with glycerinated psoas fibers primarily labels the S-1 moieties of such fibers, but it does not impair fiber contractility even when the degree of labeling is as high as 0.8 moles fluorophore per mole myosin. The polarization of the on-axis fluorescence from either the IAEDANS fluorophore, or the intrinsic tryptophane fluorophore, depends on whether the fiber is relaxed, in rigor, or developing isometric tension; furthermore, the changes in polarization on going from one state to another are much the same with either tryptophane or IAEDANS fluorophores. The foregoing is true whether the plane of the exciting light is parallel or perpendicular to the fiber axis. Also, if a fiber is first freed of its myosin by extraction, and is then incubated with IAEDANS-labeled S-1 the resulting polarization approaches that observed with a labeled, unextracted fiber in rigor. By contrast, incubation with the fluorophore, 7-nitro-4-chlorobenz-2-oxa-1,3-diazole (NBD-Cl) confers fluorescence only on actin, without impairing contractility, but the polarization of such fluorescence changes in a different direction and magnitude from myosin-originating fluorescence. It is concluded from these various observations that whether the fluorophore is IAEDANS or tryptophane the polarization change with change in physiological state originates in the S-1 moieties of fibers, and relates to the space attitude of these moieties.  相似文献   

18.
Radiative decay engineering: biophysical and biomedical applications.   总被引:5,自引:0,他引:5  
Fluorescence spectroscopy is a widely used research tool in biochemistry and molecular biology. Fluorescence has also become the dominant method enabling the revolution in medical diagnostics, DNA sequencing, and genomics. To date all the fluorescence observables, including spectral shifts, anisotropies, quantum yields, and lifetimes, have all been utilized in basic and applied uses of fluorescence. In this forward-looking article we describe a new opportunity in fluorescence, radiative decay engineering (RDE). By RDE we mean modifying the emission of fluorophores or chromophores by increasing or decreasing their radiative decay rates. In most fluorescence experiments the radiative rates are not changed because these rates depend on the extinction coefficient of the fluorophore. This intrinsic rate is not changed by quenching and is only weakly dependent on environmental effects. Spectral changes are usually caused by changes in the nonradiative rates resulting from quenching or resonance energy transfer. These processes affect the emission by providing additional routes for decay of the excited states without emission. In contrast to the relatively constant radiative rates in free solution, it is known that the radiative rates can be modified by placing the fluorophores at suitable distances from metallic surfaces and particles. This Review summarizes results from the physics literature which demonstrate the effects of metallic surfaces, colloids, or islands on increasing or decreasing emissive rates, increasing the quantum yields of low quantum yield chromophores, decreasing the lifetimes, and directing the typically isotropic emission in specific directions. These effects are not due to reflection of the emitted photons, but rather as the result of the fluorophore dipole interacting with free electrons in the metal. These interactions change the intensity and temporal and spatial distribution of the radiation. We describe the unusual effects expected from increases in the radiative rates with reference to intrinsic and extrinsic biochemical fluorophores. For instance, the decreased lifetime can result in an effective increase in photostability. Proximity to nearby metallic surfaces can also increase the local field and modify the rate of excitation. We predict that the appropriate localization of fluorophores near particles can result in usefully high emission from "nonfluorescent" molecules and million-fold increases in the number of photons observable from each fluorophore. We also describe how RDE can be applied to medical testing and biotechnology. As one example we predict that nearby metal surfaces can be used to increase the low intrinsic quantum yields of nucleic acids and make unlabeled DNA detectable using its intrinsic metal-enhanced fluorescence.  相似文献   

19.
The authors describe a new approach to measuring DNA hybridization based on surface plasmon-coupled emission (SPCE). SPCE is the resonance coupling of excited fluorophores with electron motions in thin metal films, resulting in efficient transfer of energy through the film and radiation into the glass substrate. The authors evaluated the use of SPCE for detection of DNA hybridization. An unlabeled capture biotinylated oligonucleotide was attached near the surface of a thin (50 nm) silver film using streptavidin. The authors then measured the emission intensity of single-stranded Cy5-labeled DNA upon binding to a complementary oligomer attached to a silver film. Hybridization could be detected by an increase in SPCE, which appeared as light radiated into the substrate at a sharply defined angle near 73 degrees from the normal. The largest signals were observed when the excitation angle of incidence equaled the surface plasmon wavelength, but directional emission was also observed without excitation by the surface plasmon evanescent field. The increased intensity is due to proximity to the metal surface, so that hybridization can be detected without a change in the quantum yield of the fluorophore. These results indicate that SPCE can provide highly sensitive real-time measurement of DNA hybridization.  相似文献   

20.
Metallic particles and surfaces display diverse and complex optical properties. Examples include the intense colors of noble metal colloids, surface plasmon resonance absorption by thin metal films, and quenching of excited fluorophores near the metal surfaces. Recently, the interactions of fluorophores with metallic particles and surfaces (metals) have been used to obtain increased fluorescence intensities, to develop assays based on fluorescence quenching by gold colloids, and to obtain directional radiation from fluorophores near thin metal films. For metal-enhanced fluorescence it is difficult to predict whether a particular metal structure, such as a colloid, fractal, or continuous surface, will quench or enhance fluorescence. In the present report we suggest how the effects of metals on fluorescence can be explained using a simple concept, based on radiating plasmons (RPs). The underlying physics may be complex but the concept is simple to understand. According to the RP model, the emission or quenching of a fluorophore near the metal can be predicted from the optical properties of the metal structures as calculated from electrodynamics, Mie theory, and/or Maxwell's equations. For example, according to Mie theory and the size and shape of the particle, the extinction of metal colloids can be due to either absorption or scattering. Incident energy is dissipated by absorption. Far-field radiation is created by scattering. Based on our model small colloids are expected to quench fluorescence because absorption is dominant over scattering. Larger colloids are expected to enhance fluorescence because the scattering component is dominant over absorption. The ability of a metal's surface to absorb or reflect light is due to wavenumber matching requirements at the metal-sample interface. Wavenumber matching considerations can also be used to predict whether fluorophores at a given distance from a continuous planar surface will be emitted or quenched. These considerations suggest that the so called "lossy surface waves" which quench fluorescence are due to induced electron oscillations which cannot radiate to the far-field because wavevector matching is not possible. We suggest that the energy from the fluorophores thought to be lost by lossy surface waves can be recovered as emission by adjustment of the sample to allow wavevector matching. The RP model provides a rational approach for designing fluorophore-metal configurations with the desired emissive properties and a basis for nanophotonic fluorophore technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号