首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trophectoderm (TE) ofblastocysts, the first epithelium established in mammalian development, 1) plays signaling, supportive, and patterning functions during pre-implantation development, 2) ensures embryo implantation into the uterine wall, and 3) gives rise to extra-embryonic tissues essential for embryo patterning and growth after implantation. We show that mouse TE, itself permissive to lentiviral (LV) infection, represents a robust non-permeable physical barrier to the virus particles, thereby shielding the cells of the inner cell mass (ICM) from viral infection. This LV feature will allow modulations of gene expression in a lineage-specific manner, thus having significant applications in mouse functional genetics.  相似文献   

2.
Stochastic patterning in the mouse pre-implantation embryo   总被引:1,自引:0,他引:1  
  相似文献   

3.
Recent studies have revealed asymmetries in the mouse zygote and preimplantation embryo, well before the establishment of anterior-posterior polarity after implantation. Whether these asymmetries are causally related to embryonic patterning or are coincidental outcomes of the topology of normal development remains uncertain.  相似文献   

4.
Analysis of gene expression patterns during early stages of mammalian embryonic development can provide important clues about gene function, cell-cell interaction and signaling mechanisms that guide embryonic patterning. However, dissection of the mouse embryo from the decidua shortly after implantation can be a challenging procedure, and detailed step-by-step documentation of this process is lacking. Here we demonstrate how post-implantation (6.5 dpc) embryos are isolated by first dissecting the uterus of a pregnant mouse (detection of the vaginal plug was designated day 0.5 poist coitum) and subsequently dissecting the embryo from maternal decidua. The dissection of Reichert's membrane is described as well as the removal of the ectoplacental cone.  相似文献   

5.
The earliest recognizable sign of patterning of the mouse embryo along the anteroposterior (A-P) axis is the migration of the distal visceral endoderm (DVE) toward the future anterior side. Here we report an asymmetry in the mouse embryo at an unexpectedly early stage. The gene for Lefty1, a Nodal antagonist that influences the direction of DVE migration, was found to be asymmetrically expressed in the primitive endoderm of the implanting blastocyst. Lefty1 expression begins randomly in the inner cell mass (ICM) of the blastocyst but is regionalized to one side of the tilted ICM shortly after implantation. Asymmetric expression of Lefty1 can be established by in vitro culture, indicating that it does not require interaction with the uterus. The asymmetric Lefty1 expression is induced by Nodal signaling, although Nodal and genes for its effectors are expressed symmetrically. This asymmetry in molecular patterning of the mouse embryo pushes back the origin of the A-P body axis to the peri-implantation stage.  相似文献   

6.
7.
8.
Transgenic mice with a defined cell‐ or tissues‐specific expression of Cre‐recombinase are essential tools to study gene function. Here we report the generation and analysis of a transgenic mouse line (Cdx1::Cre) with restricted Cre‐expression from Cdx1 regulatory elements. The expression of Cre‐recombinase mimicked the endogenous expression pattern of Cdx1 at midgastrulation (from E7.5 to early headfold stage) inducing recombination in the three germlayers of the primitive streak region throughout the posterior embryo and caudal to the heart. This enables gene modifications to investigate patterning of the caudal embryo during and after gastrulation. Interestingly, we identified Cdx1 expression in the trophectoderm (TE) of blastocyst stage embryos. Concordantly, we detected extensive Cre‐mediated recombination in the polar TE and, although to lesser extent, in the mural TE. In E7.5 postimplantation embryos, almost all cells of the extraembryonic ectoderm (ExE), which are derived from the polar TE, are recombined although the ExE itself is negative for Cdx1 and Cre at this stage. These results indicate that Cdx1::Cre mice are also a valuable tool to study gene function in tissues essential for placental development. genesis 47:204–209, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Inadvertent lead placement in the left ventricle (LV) is an uncommon and often under-diagnosed complication of cardiac device implantation. Thromboembolic (TE) events are common and usually secondary to fibrosis or thrombus formation on or around the lead. Anticoagulation can prevent TE events. Percutaneous and surgical LV lead extractions have been performed successfully, but the risks of percutaneous lead removal are not well-defined. In this report, we describe a case of inadvertent LV lead placement and briefly review the contemporary literature.  相似文献   

10.
11.
A growing body of evidence indicates that although the early mouse embryo retains flexibility in responding to perturbations, its patterning is initiated at the earliest developmental stages. There are a few spatial cues that are able to influence the pattern of cleavage divisions: one of these lies in the vicinity of the previous meiotic division, the second is associated with the sperm entry and, related to this, the third is the cell shape. Furthermore, the first cleavage separates the zygote into two cells that tend to follow distinguishable fates: one contributes mainly to the embryonic part of the blastocyst, and the other to the abembryonic. The cumulative effect of the early asymmetries generated through cleavage might lead to asymmetric interactions between the first lineages of cells. This could influence development of patterning after implantation. These early polarity cues serve to bias patterning and not as definitive determinants.  相似文献   

12.
The trophectoderm (TE) and inner cell mass (ICM) are committed and marked by reciprocal expression of Cdx2 and Oct4 in mouse late blastocysts. We find that the TE is not committed at equivalent stages in cattle, and that bovine Cdx2 is required later, for TE maintenance, but does not repress Oct4 expression. A mouse Oct4 (mOct4) reporter, repressed in mouse TE, remained active in the cattle TE; bovine Oct4 constructs were not repressed in the mouse TE. mOct4 has acquired Tcfap2 binding sites mediating Cdx2-independent repression-cattle, humans, and rabbits do not contain these sites and maintain high Oct4 levels in the TE. Our data suggest that the regulatory circuitry determining ICM/TE identity has been rewired in mice, to allow rapid TE differentiation and early blastocyst implantation. These findings thus emphasize ways in which mice may not be representative of the earliest stages of mammalian development and stem cell biology.  相似文献   

13.
In vitro culture (IVC) systems are required for many biotechnological and assisted reproductive technologies and the researchers have been modifying in vitro embryo culture conditions to reach the comparable efficiencies provided in vivo. In the present study, the effects of beta-mercaptoethanol (Beta-ME) and amino acids (AA) on the development of mouse embryos obtained in vivo or in vitro at different stages were investigated. Chemically defined potassium simplex optimized medium (KSOM) was used as basic culture medium and six experimental groups were established and by supplementation of Beta-ME and AA into KSOM media. The quality of blastocysts was evaluated by counting the cells and determining the ratio of inner cell mass (ICM) to trophoectoderm (TE) cells. In addition, embryo transfer (ET) was performed to investigate the rate of implantation and live fetuses. The results obtained in the present study demonstrated that the combined treatment of Beta-ME and AA to 1-cell stage embryos not only enhanced in vitro development to the blastocyst stage but also improved both the number of blastocysts cells and live fetuses.  相似文献   

14.
The oocytes of many invertebrate and non-mammalian vertebrate species are not only asymmetrical but also polar in the distribution of organelles, localized RNAs and proteins, and the oocyte polarity dictates the patterning of the future embryo. Polarily located within the oocytes of many species is the Balbiani body (Bb), which in Xenopus is known to be associated with the germinal granules responsible for the determination of germ cell fate. In contrast, in mammals, it is widely believed that the patterning of the embryo does not occur before implantation, and that oocytes are non-polar and symmetrical. Although the oocytes of many mammals, including mice and humans, contain Bbs, it remains unknown how and if the presence of Bbs relates to mouse oocyte and egg polarity. Using three-dimensional reconstruction of mouse neonatal oocytes, we showed that mouse early oocytes are both asymmetrical and transiently polar. In addition, the specifics of polarity in mouse oocytes are highly reminiscent of those in Xenopus early oocytes. Based on these findings, we conclude that the polarity of early oocytes imposed by the position of the centrioles at the cytoplasmic bridges is a fundamental and ancestral feature across the animal kingdom.  相似文献   

15.
The first cell fate decision during mouse development concerns whether a blastomere will contribute to the inner cell mass (ICM; which gives rise to the embryo proper) or to trophectoderm (TE; which gives rise to the placenta). The position of a cell within an 8- to 16-cell-stage embryo correlates with its future fate, with outer cells contributing to TE and inner cells to the ICM. It remains unknown, however, whether an earlier pre-pattern exists. Here, we propose a hypothesis that could account for generation of such a pre-pattern and which is based on epigenetic asymmetry (such as in histone or DNA methylation) between maternal and paternal genomes in the zygote.  相似文献   

16.
Coordinated uterine-embryonic axis formation and decidual remodeling are hallmarks of mammalian post-implantation embryo development. Embryonic-uterine orientation is determined at initial implantation and synchronized with decidual development. However, the molecular mechanisms controlling these events remain elusive despite its discovery a long time ago. In the present study, we found that uterine-specific deletion of Rbpj, the nuclear transducer of Notch signaling, resulted in abnormal embryonic-uterine orientation and decidual patterning at post-implantation stages, leading to substantial embryo loss. We further revealed that prior to embryo attachment, Rbpj confers on-time uterine lumen shape transformation via physically interacting with uterine estrogen receptor (ERα) in a Notch pathway-independent manner, which is essential for the initial establishment of embryo orientation in alignment with uterine axis. While at post-implantation stages, Rbpj directly regulates the expression of uterine matrix metalloproteinase in a Notch pathway-dependent manner, which is required for normal post-implantation decidual remodeling. These results demonstrate that uterine Rbpj is essential for normal embryo development via instructing the initial embryonic-uterine orientation and ensuring normal decidual patterning in a stage-specific manner. Our data also substantiate the concept that normal mammalian embryonic-uterine orientation requires proper guidance from developmentally controlled uterine signaling.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号