首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The young-of-the-year (YOY) fish community in Oder-Havel-Kanal, a navigable canal in the German lowlands, assessed from May to October 1999, was dominated by tolerant species especially roach Rutilus rutilus and perch Perca fluviatilis . Roach dominance was high in May and June and low during the rest of the sampling period. The dominance pattern of perch was inversely related to that of roach. Significantly higher densities of significantly smaller YOY fishes were found in bays compared with the straight reaches of the main channel which was the result of an aggregation of 0+ year roach in bays in May and June. Parallel to low structural variability (spawning and nursery habitats), the intensive ship traffic may have been a major force structuring the fish communities in the canals. Measured ship-induced flow velocity in straight reaches was about four times higher than in bays of the canal. Maximum flow velocities caused by barge tows were also four times higher than those induced by pleasure boats. The study demonstrated the relatively low fish reproductive potential of a navigable, artificially embanked lowland canal. To improve fish reproduction, modification of canal banks is highly advisable to preserve existing bays and tributaries and even to create additional ones.  相似文献   

2.
Developing physiological mechanistic models to predict species’ responses to climate‐driven environmental variables remains a key endeavor in ecology. Such approaches are challenging, because they require linking physiological processes with fitness and contraction or expansion in species’ distributions. We explore those links for coastal marine species, occurring in regions of freshwater influence (ROFIs) and exposed to changes in temperature and salinity. First, we evaluated the effect of temperature on hemolymph osmolality and on the expression of genes relevant for osmoregulation in larvae of the shore crab Carcinus maenas. We then discuss and develop a hypothetical model linking osmoregulation, fitness, and species expansion/contraction toward or away from ROFIs. In C. maenas, high temperature led to a threefold increase in the capacity to osmoregulate in the first and last larval stages (i.e., those more likely to experience low salinities). This result matched the known pattern of survival for larval stages where the negative effect of low salinity on survival is mitigated at high temperatures (abbreviated as TMLS). Because gene expression levels did not change at low salinity nor at high temperatures, we hypothesize that the increase in osmoregulatory capacity (OC) at high temperature should involve post‐translational processes. Further analysis of data suggested that TMLS occurs in C. maenas larvae due to the combination of increased osmoregulation (a physiological mechanism) and a reduced developmental period (a phenological mechanisms) when exposed to high temperatures. Based on information from the literature, we propose a model for C. maenas and other coastal species showing the contribution of osmoregulation and phenological mechanisms toward changes in range distribution under coastal warming. In species where the OC increases with temperature (e.g., C. maenas larvae), osmoregulation should contribute toward expansion if temperature increases; by contrast in those species where osmoregulation is weaker at high temperature, the contribution should be toward range contraction.  相似文献   

3.
4.
Common killifish, Fundulus heteroclitus, are found in marshes and estuaries along the Atlantic coast of North America from Newfoundland to Florida. Although these habitats are highly productive, they are also characterized by variation in a number of abiotic stressors, including temperature, salinity, oxygen, and anthropogenic toxicants, which vary substantially in both space and time. In order to survive in these habitats, killifish must be able to cope with these stressors, both individually and in combination. There is substantial evidence to suggest that populations of F. heteroclitus have undergone local adaptation to multiple abiotic stressors, including temperature, salinity, and toxicants, but most studies have examined the effects of single stressors in isolation. Here I review some of the studies on local adaptation in F. heteroclitus, focusing on the molecular basis of local adaptation to abiotic stressors, and the acute responses to these stressors both singly and in combination. This work demonstrates that there are substantial interactions between the responses to both natural and anthropogenic stressors at the cellular level.  相似文献   

5.
Wetlands play an important role in regulating the atmospheric carbon dioxide (CO2) concentrations and thus affecting the climate. However, there is still lack of quantitative evaluation of such a role across different wetland types, especially at the global scale. Here, we conducted a meta‐analysis to compare ecosystem CO2 fluxes among various types of wetlands using a global database compiled from the literature. This database consists of 143 site‐years of eddy covariance data from 22 inland wetland and 21 coastal wetland sites across the globe. Coastal wetlands had higher annual gross primary productivity (GPP), ecosystem respiration (Re), and net ecosystem productivity (NEP) than inland wetlands. On a per unit area basis, coastal wetlands provided large CO2 sinks, while inland wetlands provided small CO2 sinks or were nearly CO2 neutral. The annual CO2 sink strength was 93.15 and 208.37 g C m?2 for inland and coastal wetlands, respectively. Annual CO2 fluxes were mainly regulated by mean annual temperature (MAT) and mean annual precipitation (MAP). For coastal and inland wetlands combined, MAT and MAP explained 71%, 54%, and 57% of the variations in GPP, Re, and NEP, respectively. The CO2 fluxes of wetlands were also related to leaf area index (LAI). The CO2 fluxes also varied with water table depth (WTD), although the effects of WTD were not statistically significant. NEP was jointly determined by GPP and Re for both inland and coastal wetlands. However, the NEP/Re and NEP/GPP ratios exhibited little variability for inland wetlands and decreased for coastal wetlands with increasing latitude. The contrasting of CO2 fluxes between inland and coastal wetlands globally can improve our understanding of the roles of wetlands in the global C cycle. Our results also have implications for informing wetland management and climate change policymaking, for example, the efforts being made by international organizations and enterprises to restore coastal wetlands for enhancing blue carbon sinks.  相似文献   

6.
Biochemical biomarkers in common estuarine species, such as the brown shrimp Crangon crangon, have the potential to provide early warning of contaminant exposure from field collected samples and through the development of in situ tests. The biomarkers acetylcholinesterase (AChE), lactate dehydrogenase (LDH) and glutathione S-transferase (GST) have been shown to provide evidence of exposure to contaminants in a number of species and field situations. As they may naturally respond to the marked physicochemical changes found in estuaries (thus confounding contaminant-induced effects), this work aims to determine the effects of salinity, temperature and handling stressors on these biomarkers in C. crangon.AChE recovery in field-collected shrimp transplanted to clean laboratory conditions suggests the presence of inhibiting factors at the sampling site (River Minho estuary). Maintenance time in stock tanks had effects that led to the choice of a minimum 15-day maintenance period of C. crangon in the laboratory before subsequent use of the enzymes as effect criterions in toxicity assays. Field levels of biomarker activity were unaffected following field-laboratory transportation of C. crangon, making this factor unlikely to jeopardize detection of contaminant associated effects. LDH levels were significantly lower under conditions that mimic a diurnal salinity fluctuation, increasing under low salinity conditions; this potentially indicates increased energy costs associated with raised osmoregulatory demands. It is recommended that a lower limit to field exposure of in situ tests should be based on salinity. Higher temperatures led to higher AChE activities and this is in agreement with the existing evidence of increases of endogenous AChE levels as a function of temperature (within a certain range). To avoid misinterpretation of biomarker responses, studies such as this are an important contribution to the establishment of reference activity levels against which biomarker changes can be estimated and are therefore essential preliminary steps in the development of in situ bioassays using biomarkers.  相似文献   

7.
Ecological quality assessment of non-natural water bodies is, in contrast to natural systems, less developed and requires determining biological indicators that reliably reflect environmental conditions and anthropogenic pressures. This study was motivated to propose fish indicators appropriate for assessment of reservoir ecosystems in central Europe. We analysed changes in water quality, total biomass and the taxonomic, trophic and size composition of fish communities along the longitudinal axes of four elongated, deep-valley reservoirs. Due to high nutrient inputs from their catchments, the reservoirs exhibited pronounced within-system gradients in primary productivity and water transparency. Although fish communities were similar among the reservoirs and dominated by few native species, the community structure and biomass systematically changed along the longitudinal axes of the reservoirs. The biomass and proportion of planktivores/benthivores in the fish community were highest at eutrophic sites near the river inflow and declined substantially towards deep, more oligotrophic sites close to the dam. The biomass and proportion of piscivores significantly increased downstream within the reservoirs alongside improving water quality. At species level, perch Perca fluviatilis and bream Abramis brama responded most sensitively, although in opposite directions, to the longitudinal environmental gradient. The major longitudinal changes in fish community characteristics were found to be consistent between pelagic and benthic habitats. The results of this study suggest that fish communities are appropriate indicators of eutrophication and can be used for ecological quality assessment of non-natural lentic water bodies, such as reservoirs. Moreover, our results underline the necessity to consider within-system gradients in water quality and the fish community when planning sampling programmes for deep-valley reservoirs.  相似文献   

8.
Assuming that human well-being strongly relies on the services provided by well-functioning ecosystems, changes in the ecological functioning of any system can have direct and indirect effects on human welfare. Intensive land use and tourism have expanded in recent decades along coastal ecosystems, together with increasing demands for water, food and energy; all of these factors intensify the exploitation of natural resources. Many of the interrelations between ecosystem functioning and the provision of ecosystem services (ES) still require quantification in estuarine systems. A conceptual framework to assess such links in a spatially and temporally explicit manner is proposed and applied to the Mondego estuary (Portugal). This framework relies on three consecutive steps and discriminates among biodiversity structural components, ecosystem functioning and stability and the services provided by the ecosystem.Disturbances in abiotic factors were found to have a direct effect on biodiversity, ecosystem functioning and the provision of ES. The observed changes in the species composition of communities had a positive effect on the ecosystem's productivity and stability. Moreover, the observed changes in the estuarine ES provision are likely to arise from changing structural and abiotic factors and in the present case from the loss or decline of locally abundant species. This study also indicates that linear relationships between biodiversity, ecosystem functioning and services provision are unlikely to occur in estuarine systems. Instead, cumulative and complex relations are observed between factors on both temporal and spatial scales. In this context, the results suggest several additional conclusions: (1) biodiversity and ecosystem functioning interaction with human well-being need to be incorporated into decision-making processes aimed at the conservative management of systems; (2) the institutional use of research results must be part of the design and implementation of sustainable management activities; and (3) more integrative tools/studies are required to account for the interactions of estuarine ecosystems with surrounding socio-economic activities. Therefore, when performing integrated assessments of ecosystem dynamics, it becomes essential to consider not only the effects of biodiversity and ecosystem functioning on services provision but also the effects that human well-being and ES provision may have on estuarine biodiversity and ecosystem functioning.The proposed framework implies taking into account both the functional and the commodities points of view upon natural ecosystems and by this representing a line of thought which will deserve further research to explore more in detail the conceptual links between biodiversity–ecosystem functioning–services provided.  相似文献   

9.
Participation in outdoor recreation can increase support for wildlife conservation, but may also disturb wildlife. We examined responses of wintering waterbirds to the regular passage of a small boat specifically dedicated to birdwatching tours in a coastal Ramsar site in northern Spain. Disturbances were measured during two separate periods: 2006–2008 and 2012–2015. Incidence and magnitude of disturbance events were compared by grouping species based on their interest to birders (target vs. non-target) and compared across sectors of the tour route. Flight-initiation distances (FID) were used to estimate species-specific buffer zones, which can be used to manage recreational disturbance to waterbirds. We further examined relationships between species-specific traits and FID, time flying, and distance flying following disturbance. A single boat tour disturbed on average 0.3% of non-target and 2.8% of target wintering bird populations within the wetland, with the effect being more pronounced on target species due to their smaller populations. Wing loading was positively associated with distance flying after disturbance. Based on measured FIDs, we calculated an overall buffer zone for all species of 100 m, and species-specific buffer zones ranging from 41 to 211 m. Disturbance incidence and the number of birds disturbed per tour were both greatest in narrow tidal channels (<200 m), where boats were forced to pass within 100 m of waterbirds. We urge caution in allowing boat passage through tidal channels in which boat operators cannot effectively maintain recommended buffer zones between their boat and waterbirds.  相似文献   

10.
Application of ecological risk assessment to coastal and estuarine systems is accelerating although it initially lagged behind applications to land and freshwaters. Broader spatial and temporal scales, and multiple stressor integration are appropriately being considered more frequently in all risk assessment activities. This expansion and integration is essential for coastal risk assessment. Because coastal assessments must deal with co-occurrence of several candidate stressors manifesting within broad spatial and temporal scales, wider use of formal methods for assessing causal linkages is needed. Simple Bayesian inference techniques are discussed here to demonstrate their utility in quantifying the belief warranted by available information. The applicability of Bayesian techniques is illustrated with two examples, possible causes of fish kills on the Mid-Atlantic US coast and possible causes of hepatic lesions in fish of Puget Sound (Washington, US).  相似文献   

11.
1. Refugia are critical to the persistence of individuals, populations and communities in disturbed environments, yet few studies have considered how the position of refugia within the landscape interacts with the behavioural responses of component species to determine the influence of disturbance events on mobile animals. 2. An 18‐month quantitative electrofishing survey was undertaken on the Selwyn River, a stream that is intermittent in its middle reaches, to determine how the direction and distance to refugia affect the response of fish populations to drying, and how landscape context interacts with flow permanence to produce spatial patterns in communities. 3. Overall, the propensity of fish to take refuge in perennial reaches during drying episodes, and the rate and extent of recolonization from these refugia upon rewetting, depended upon the direction and distance to refugia and the behaviour of component species. 4. In the upper river, Canterbury galaxias (Galaxias vulgaris), upland bullies (Gobiomorphus breviceps) and brown trout (Salmo trutta) migrated upstream to permanent water as the stream dried from the bottom up, but frequent drying and slow recolonization by most species combined to produce a fish community in intermittent reaches that was quantitatively and qualitatively different to that in neighbouring perennial reaches. 5. In the lower river, fish did not appear to migrate downstream to permanent water as the stream dried from the top down, but a lower frequency of drying episodes and faster recolonization by upland bullies and eels (Anguilla spp.) from downstream refugia allowed the fish community in intermittent reaches to converge with that in neighbouring perennial reaches during prolonged wetted periods. 6. Longitudinal patterns of increasing fish density and species richness with flow permanence are interpreted as the product of species‐specific responses to drying events and the spatial position of refugia within the riverscape.  相似文献   

12.
Changes in plant community traits along an environmental gradient are caused by interspecific and intraspecific trait variation. However, little is known about the role of interspecific and intraspecific trait variation in plant community responses to the restoration of a sandy grassland ecosystem. We measured five functional traits of 34 species along a restoration gradient of sandy grassland (mobile dune, semi‐fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. We examined how community‐level traits varied with habitat changes and soil gradients using both abundance‐weighted and non‐weighted averages of trait values. We quantified the relative contribution of inter‐ and intraspecific trait variation in specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), and plant height to the community response to habitat changes in the restoration of sandy grassland. We found that five weighted community‐average traits varied significantly with habitat changes. Along the soil gradient in the restoration of sandy grassland, plant height, SLA, LDMC, and LCC increased, while LNC decreased. For all traits, there was a greater contribution of interspecific variation to community response in regard to habitat changes relative to that of intraspecific variation. The relative contribution of the interspecific variation effect of an abundance‐weighted trait was greater than that of a non‐weighted trait with regard to all traits except LDMC. A community‐level trait response to habitat changes was due largely to species turnover. Though the intraspecific shift plays a small role in community trait response to habitat changes, it has an effect on plant coexistence and the maintenance of herbaceous plants in sandy grassland habitats. The context dependency of positive and negative covariation between inter‐ and intraspecific variation further suggests that both effects of inter‐ and intraspecific variation on a community trait should be considered when understanding a plant community response to environmental changes in sandy grassland ecosystems.  相似文献   

13.
Species richness of vascular plants and birds were examined in relation to five types of management (including abandonment) of oak-hazel woodland in south-central Sweden. The biodiversity of this type of woodland is affected by lengthy management in contrast to present emphasis on the fragmentation of more or less pristine forests. The woodlands derive from old deciduous forests but were a source of agricultural commodities from medieval time to end of the 19th century. Vascular plants and birds were censused during spring–summer for four years. Total number of plant species, species of field layer forbs, breeding birds and migrant birds were more numerous at simulated original management with mowing of small interior grasslands than at mechanical clearing or abandonment. Summer grazing led to intermediate numbers. Exotic plants were more common at long-time abandonment. Species richness of trees and shrubs, graminoids, all spring birds, resident birds and non-passerine birds did not exhibit any difference between treatments. Inter-site variation in species richness was usually smaller at abandonment than at true management. Species richness of plants and birds showed positive correlation in the particularly large sites examined. The general findings were in accordance with the intermediate disturbance hypothesis. Original management would secure most potential plant and bird species but extensive cattle grazing would also retain many species.  相似文献   

14.
This paper presents an advanced version of the Index of Biotic Integrity (IBI), a multimetric index to indicate ecosystem health. The multimetric index has been adapted in such a way that it not only indicates overall condition but also specific causes of environmental disturbance. The newly developed index (a) uses data of tolerant as well as intolerant species in a single metric to indicate environmental disturbance, (b) does not require knowledge about species from the literature, and (c) can be applied to artificial landscapes.The metrics proposed here consist of indicator species assemblages that are selected directly for their relationship with an environmental component or specific type of environmental degradation. Thus, each metric indicates a type of environmental concern, which enables conservation practices to be targeted more effectively. Species assemblages for each single metric consist of a combination of species that can be negatively and positively related to environmental disturbances, providing a better indication of stream ecosystem health.The area studied was assumed to be too diverse for one single index. Canonical Indirect-Gradient Principal Component Analysis indicated that the optimal division of subindices based on stream typology was for streams with drainage basin sizes <10 km2 and >10 km2. Pearson Product-Moment Correlations were used to identify relationships between anthropogenic disturbances and the composition and abundance of fish species at impacted as well as undisturbed sites. This index proved to be useful for indicating overall stream ecosystem health as well as local onsite environmental disturbances or the environmental components of greatest concern. This index does require extensive information about measured levels of anthropogenic disturbances with the accompanying composition and abundance of fish species.  相似文献   

15.
Understanding trophic relationships of fish in estuarine ecosystem is an important element for sustainable resource management. This study examined the feeding habits of 29 dominant fish species, characterized the trophic guilds, assessed the impact of season and clarified the role of diets in structuring the fish community in the mouth region of Pattani Bay, Thailand. Samples of 5792 fishes collected monthly by gillnets from March 2019 to February 2020 were used for stomach content analyses. It was found that the number of food types and fullness index differed between fish taxa (P < 0.001). Most fishes were specialist feeders feeding on specific food components and were categorized into five trophic guilds: piscivore, shrimp-fish feeder, polychaete feeder, zooplanktivore and planktivore. Six species were piscivorous, considered as apex predators, that fed almost entirely on fishes. High diet overlaps among some species (>0.6) were recorded. Not much variation in seasonal guilds was observed: four guilds in the dry season, three in the moderate rainy season and four in the rainy season. Some species remained in the same guild the whole year round, but some fishes changed seasonally. Two fish communities from different regions of the bay were segregated based on feeding habits. The inner bay community comprised mainly copepod and plankton feeders, but there were more piscivores in the deeper bay mouth area. Results from this study help us to understand the feeding habits and trophic guilds of dominant fish species at the mouth of this tropical estuarine bay.  相似文献   

16.
Abstract. Throughout the Mediterranean region, vegetation dynamics are affected by human activities which are either ‘stresses’ or ‘disturbances’, depending on their frequency, intensity and spatial distribution. To minimize or reduce anthropogenic degradation caused by land use and other disturbances, it is necessary to understand and predict the various responses of plant communities to disturbances. In particular, detailed but integrative approaches are required to assimilate large databases on vegetation and to make them directly useful for managers and restorers. We describe two case studies undertaken to evaluate the effects of logging or overgrazing on plant species diversity in pine forests of southern France and steppe ecosystems of southern Tunisia. Both studies employed the same methodology to identify plant functional traits (morphological, life history and regeneration traits) associated with community response to disturbance. The results of these analyses allowed us to develop state and transition models that could be used to plan and predict ecosystem trajectories, assess ongoing degradation processes and monitor community and ecosystem responses to management and restoration practices. We discuss the relevance and the use of plant functional types (PFTs) as tools for ecosystem management and planning and for monitoring restoration in southern Europe, northern Africa and elsewhere. Using this approach it is possible to improve management strategies for the conservation, restoration and sustainable exploitation of biodiversity and of ecosystems.  相似文献   

17.
18.
We experimentally reduced the diversity of detritivorous stream insects in field enclosures, and measured the effects on an ecosystem function, processing of leaf litter. Two dominant species were removed separately, the stonefly Pteronarcys californica and the caddisfly Lepidostoma unicolor . In principle, processing could be maintained after species loss in two ways: the remaining species could increase their rates of shredding (per capita response), or they could increase in abundance (numerical response). We imposed a numerical response in some treatments by experimentally increasing abundances of either all the remaining species or the other dominant species so that expected metabolic capacity of the assemblage returned to full-diversity levels. Numerical responses were generally effective in maintaining leaf breakdown when either Lepidostoma or Pteronarcys was removed, except that the treatment in which Lepidostoma was replaced by an equivalent metabolic capacity of all remaining species showed less leaf loss than the full-diversity treatment. Per capita responses by other species appeared effective in compensating for the removal of Pteronarcys (although there were other explanations) but were not effective in compensating for the removal of Lepidostoma . In summary, the consequences of reduced biodiversity varied with which species was lost and how the remainder responded. Thus there was no simple relationship between biodiversity and ecosystem functioning. However, when numerical or per capita compensation does occur, stability of function should rise with diversity in such "interactive" assemblages.  相似文献   

19.
The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no‐till, had a much greater impact on nearly everything measured compared to the crop planted. No‐till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no‐till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff—both of which have ecosystem‐level effects and both direct and indirect effects on humans and other organisms.  相似文献   

20.
Effective natural resource management requires knowledge exchange between researchers and managers to support evidence‐based decision‐making. To achieve this, there is a need to align research with management and policy needs. This project aimed to identify the flow‐related ecological knowledge needs for freshwater fish to better inform environmental water management in the Murray–Darling Basin, south‐eastern Australia. Our major objective was to provide an up‐to‐date assessment of scientific research and integrate this with the knowledge requirements of relevant managers to guide future research. We reviewed the contemporary scientific literature and engaged managers specifically responsible for delivering flows for fish outcomes via a questionnaire and workshop. Research on fishes of the MDB has generally evolved from single locations and/or times to larger spatio‐temporal scales, including multiple sites, rivers and catchments. There has also been a trend from single life stage studies to incorporation of multiple life stages and population processes. There remain, however, significant deficiencies in knowledge for most native species, many of which are threatened. Four agreed key knowledge gaps were derived from the literature review and managers’ suggestions: (i) population dynamics, (ii) movement, dispersal and connectivity, (iii) survival and recruitment to adults and (iv) recruitment drivers. To inform policy and management, managers desired timely advice, based on robust research and monitoring. Fish species of most relevance to managers were those highly regarded by community stakeholders and whose life histories and population dynamics are potentially influenced by flow. Populations of these mostly large‐bodied, angling species (e.g. Murray Cod, Golden Perch and Silver Perch) have declined, often due to river regulation and, in conjunction with managers’ priorities, are relevant candidates for research to support the management of flow to rehabilitate fish populations in the MDB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号