首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的研究一种由鼠李糖乳杆菌DM9054和植物乳杆菌86066构成的降脂益生菌组合对非酒精性脂肪性肝病(NAFLD)小鼠胆固醇代谢的影响及其可能机制。方法 24只雄性LDLR-/-小鼠随机分为对照组、模型组和益生菌干预组。高脂饮食(HFD)15周建立小鼠NAFLD模型,造模同时干预组给予鼠李糖乳杆菌DM9054联合植物乳杆菌86066灌胃,对照组和模型组给予等量生理盐水灌胃。实验过程中监测各组小鼠体重变化。实验结束后,检测小鼠血清甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL)和高密度脂蛋白胆固醇(HDL)的水平差异。检测小鼠肝脏组织病理变化。使用Realtime PCR检测小鼠肠道内法尼脂受体(FXR)mRNA、顶端膜钠依赖的胆汁酸转运体(ASBT)mRNA、纤维生长因子15(FGF-15)mRNA和三磷酸腺苷结合盒转运体G5(ABCG-5)mRNA表达水平。Western blot检测小鼠肝脏胆固醇7α-羟化酶(CYP7A1)、FXR、三磷酸腺苷结合盒转运体G8(ABCG-8)、清道夫受体BI(SR-BI)、3-羟基-3-甲基戊二酸单酰辅酶A还原酶(HMGCR)、胆盐输出泵(ABCB-11)、纤维生长因子受体4(FGFR-4)和胆固醇调节元件结合蛋白-2(SREBP-2)蛋白表达水平。结果与模型组相比,降脂益生菌干预组小鼠体重减轻(P0.05);小鼠血清TC、TG、LDL水平降低,HDL水平升高(P0.05);小鼠肝脏脂肪变性和炎性细胞浸润的现象显著减少;小鼠肠道ASBT mRNA和ABCG-5mRNA表达水平明显降低(Ps0.05),FGF-15mRNA表达水平明显升高(P0.05),FXR mRNA表达水平差异无统计学意义(P0.05);小鼠肝脏FGFR-4蛋白表达水平升高(P0.05),SREBP-2和HMGCR蛋白表达水平降低(Ps0.05),FXR、CYP7A1、SR-BI、ABCG-8和ABCB-11蛋白表达水平差异无统计学意义(Ps0.05)。结论降脂益生菌可能通过激活FXR-FGF15通路调节胆汁酸代谢;通过下调SREBP-2表达水平,抑制HMGCR表达,减少胆固醇的生成,从而起到改善非酒精性脂肪肝的作用。  相似文献   

2.
Non-alcoholic fatty liver disease (NAFLD) is becoming the main cause of liver disease in Western countries, especially in morbidly obese patients (MOPs). The proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recently studied because of its possible involvement in the pathogenesis of NAFLD, but its role, at least in MOPs, is still controversial. The aim of this study was to clarify the correlation between the circulating levels of the PCSK9 protein (cPCSK9) and its hepatic expression with the severity of liver damage in a population of MOPs with NAFLD undergoing bariatric surgery. PCSK9 mRNA was positively correlated with FASN, PPARγ and PPARα mRNAs, while no significant differences were found in PCSK9 mRNA expression in relation to the severity of liver steatosis, lobular inflammation and hepatocellular ballooning. In addition, hepatic PCSK9 protein expression levels were not related to histological parameters of lobular inflammation and hepatocyte ballooning, decreased significantly only in relation to the severity of hepatic steatosis, and were inversely correlated with ALT and AST serum levels. cPCSK9 levels in the whole population were associated with the severity of hepatic steatosis and were positively correlated to total cholesterol levels. In multivariate analysis, cPCSK9 levels were associated with age, total cholesterol and HbA1c. In conclusion, in MOPs our findings support a role for PCSK9 in liver fat accumulation, but not in liver damage progression, and confirm its role in the increase of blood cholesterol, which ultimately may contribute to increased cardiovascular risk in this population.  相似文献   

3.
Cholesterol homeostasis is strictly regulated through the modulation of HMG-CoA reductase (HMGCR), the rate-limiting enzyme of cholesterol synthesis. Phosphorylation of HMGCR inactivates it and dephosphorylation activates it. AMP-activated protein kinase (AMPK) is the major kinase phosphorylating the enzyme. Our previous study found that thyroid-stimulating hormone (TSH) increased the hepatocytic HMGCR expression, but it was still unclear whether TSH affected hepatic HMGCR phosphorylation associated with AMPK. We used bovine TSH (bTSH) to treat the primary mouse hepatocytes and HepG2 cells with or without constitutively active (CA)-AMPK plasmid or protein kinase A inhibitor (H89), and set up the TSH receptor (Tshr)-KO mouse models. The p-HMGCR, p-AMPK, and related molecular expression were tested. The ratios of p-HMGCR/HMGCR and p-AMPK/AMPK decreased in the hepatocytes in a dose-dependent manner following bTSH stimulation. The changes above were inversed when the cells were treated with CA-AMPK plasmid or H89. In Tshr-KO mice, the ratios of liver p-HMGCR/HMGCR and p-AMPK/AMPK were increased relative to the littermate wild-type mice. Consistently, the phosphorylation of acetyl-CoA carboxylase, a downstream target molecule of AMPK, increased. All results suggested that TSH could regulate the phosphorylation of HMGCR via AMPK, which established a potential mechanism for hypercholesterolemia involved in a direct action of the TSH in the liver.  相似文献   

4.
Mitochondrial ATPase ATAD3A is essential for cholesterol transport, mitochondrial structure, and cell survival. However, the relationship between ATAD3A and nonalcoholic fatty liver disease (NAFLD) is largely unknown. In this study, we found that ATAD3A was upregulated in the progression of NAFLD in livers from rats with diet-induced nonalcoholic steatohepatitis and in human livers from patients diagnosed with NAFLD. We used CRISPR-Cas9 to delete ATAD3A in Huh7 human hepatocellular carcinoma cells and used RNAi to silence ATAD3A expression in human hepatocytes isolated from humanized liver-chimeric mice to assess the influence of ATAD3A deletion on liver cells with free cholesterol (FC) overload induced by treatment with cholesterol plus 58035, an inhibitor of acetyl-CoA acetyltransferase. Our results showed that ATAD3A KO exacerbated FC accumulation under FC overload in Huh7 cells and also that triglyceride levels were significantly increased in ATAD3A KO Huh7 cells following inhibition of lipolysis mediated by upregulation of lipid droplet-binding protein perilipin-2. Moreover, loss of ATAD3A upregulated autophagosome-associated light chain 3-II protein and p62 in Huh7 cells and fresh human hepatocytes through blockage of autophagosome degradation. Finally, we show the mitophagy mediator, PTEN-induced kinase 1, was downregulated in ATAD3A KO Huh7 cells, suggesting that ATAD3A KO inhibits mitophagy. These results also showed that loss of ATAD3A impaired mitochondrial basal respiration and ATP production in Huh7 cells under FC overload, accompanied by downregulation of mitochondrial ATP synthase. Taken together, we conclude that loss of ATAD3A promotes the progression of NAFLD through the accumulation of FC, triglyceride, and damaged mitochondria in hepatocytes.  相似文献   

5.
IntroductionImbalanced cholesterol metabolism in the brain is one of the main pathophysiological mechanisms involved in Alzheimer's disease. We investigated the effect of amyloid-beta (Aβ) on the main proteins involved in regulation of cholesterol metabolism along with cholesterol content in astrocytes and neurons.MethodsAstrocytes and neurons were cultured and treated with Aβ. Apolipoprotein E (apoE) level in the cells and conditioned media, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), ATP-binding cassette transporter A1 (ABCA1), and cytochrome P450 46A1 (CYP46A1) in cell lysates were determined using immunoblotting. Astrocyte media was added to the Aβ-pretreated neurons then, HMGCR was assessed. Cholesterol was measured in both cells and media.ResultsAβ caused a significant increase in HMGCR and ABCA1 protein levels and cholesterol content in both cells without increasing cholesterol efflux. A similar increase was seen for cellular apoE level in astrocytes with no changes in media with a significant reduction of cholesterol efflux. HMGCR level was restored to near control level when Aβ-pretreated neurons were exposed to media from culture astrocytes.ConclusionAlmost all events related to cholesterol homeostasis in neurons and astrocytes, are somehow affected by Aβ. However, because ABCA1 has the most important role(s) in brain cholesterol homeostasis, all subsequent events associated with astrocytes-cholesterol synthesis and its shuttling to neurons are influenced by the effects of Aβ on ABCA1 which could likely be responsible for altered brain cholesterol metabolism in Alzheimer's disease.  相似文献   

6.
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.  相似文献   

7.
8.
Non-alcoholic fatty liver disease (NAFLD) has become a common liver disease in recent decades. No effective treatment is currently available. Probiotics and natural functional food may be promising therapeutic approaches to this disease. The present study aims to investigate the efficiency of the anthraquinone from Cassia obtusifolia L. (AC) together with cholesterol-lowering probiotics (P) to improve high-fat diet (HFD)-induced NAFLD in rat models and elucidate the underlying mechanism. Cholesterol-lowering probiotics were screened out by MRS-cholesterol broth with ammonium ferric sulfate method. Male Sprague–Dawley rats were fed with HFD and subsequently administered with AC and/or P. Lipid metabolism parameters and fat synthesis related genes in rat liver, as well as the diversity of gut microbiota were evaluated. The results demonstrated that, compared with the NAFLD rat, the serum lipid levels of treated rats were reduced effectively. Besides, cholesterol 7α-hydroxylase (CYP7A1), low density lipoprotein receptor (LDL-R) and farnesoid X receptor (FXR) were up-regulated while the expression of 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR) was reduced. The expression of peroxisome proliferator activated receptor (PPAR)-α protein was significantly increased while the expression of PPAR-γ and sterol regulatory element binding protein-1c (SREBP-1c) was down-regulated. In addition, compared with HFD group, in AC, P and AC+P group, the expression of intestinal tight-junction protein occludin and zonula occluden-1 (ZO-1) were up-regulated. Furthermore, altered gut microbiota diversity after the treatment of probiotics and AC were analysed. The combination of cholesterol-lowering probiotics and AC possesses a therapeutic effect on NAFLD in rats by up-regulating CYP7A1, LDL-R, FXR mRNA and PPAR-α protein produced in the process of fat metabolism while down-regulating the expression of HMGCR, PPAR-γ and SREBP-1c, and through normalizing the intestinal dysbiosis and improving the intestinal mucosal barrier function.  相似文献   

9.
10.
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease; the histological spectrum of which ranges from steatosis to steatohepatitis. Nonalcoholic steatohepatitis (NASH) often leads to cirrhosis and development of hepatocellular carcinoma. To better understand pathogenesis of NAFLD, we performed the pathway of distinction analysis (PoDA) on a genome-wide association study dataset of 250 non-Hispanic white female adult patients with NAFLD, who were enrolled in the NASH Clinical Research Network (CRN) Database Study, to investigate whether biologic process variation measured through genomic variation of genes within these pathways was related to the development of steatohepatitis or cirrhosis. Pathways such as Recycling of eIF2:GDP, biosynthesis of steroids, Terpenoid biosynthesis and Cholesterol biosynthesis were found to be significantly associated with NASH. SNP variants in Terpenoid synthesis, Cholesterol biosynthesis and biosynthesis of steroids were associated with lobular inflammation and cytologic ballooning while those in Terpenoid synthesis were also associated with fibrosis and cirrhosis. These were also related to the NAFLD activity score (NAS) which is derived from the histological severity of steatosis, inflammation and ballooning degeneration. Eukaryotic protein translation and recycling of eIF2:GDP related SNP variants were associated with ballooning, steatohepatitis and cirrhosis. Il2 signaling events mediated by PI3K, Mitotic metaphase/anaphase transition, and Prostanoid ligand receptors were also significantly associated with cirrhosis. Taken together, the results provide evidence for additional ways, beyond the effects of single SNPs, by which genetic factors might contribute to the susceptibility to develop a particular phenotype of NAFLD and then progress to cirrhosis. Further studies are warranted to explain potential important genetic roles of these biological processes in NAFLD.  相似文献   

11.
12.
13.
It is important to clarify the distinct contributions of estrogen/estrogen receptor (ER) and androgen/androgen receptor (AR) signaling and their reciprocal effects on the regulation of hepatic lipid homeostasis. We studied the molecular mechanisms underlying the preventive effects of estradiol (E2), dihydrotestosterone (DHT), or E2+DHT on high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) in an orchidectomized Sprague-Dawley (SD) rat model. E2 is shown to be associated with decreased fatty acid synthesis in hepatic zone 3-specific manner by increasing the phosphorylation of acetyl coenzyme-A carboxylase via an ERα-mediated pathway. DHT is shown to be associated with decreased lipid accumulation and cholesterol synthesis in a hepatic zone 1-specific manner by increasing expression of carnitine palmitotyltransferase1 and phosphorylation of 3-hydroxy-3-methyl-glutaryl-CoA reductase via an AR-mediated pathway. E2+DHT showed an additive positive effect and normalized all three impaired zones of the liver. Gene expression changes in human severe liver steatosis were similar to those of experimental rat NAFLD. Steroids reversed the histopathological NAFLD changes, likely by decreasing fatty acid and cholesterol synthesis and increasing β-oxidation. The diverse steroid effects (ER/AR) on NAFLD prevention in male rats indicate the potential applicability of ER/AR modulators for NAFLD treatment.  相似文献   

14.
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the target of the statins, important drugs that lower blood cholesterol levels and treat cardiovascular disease. Consequently, the regulation of HMGCR has been investigated in detail. However, this enzyme acts very early in the cholesterol synthesis pathway, with ∼20 subsequent enzymes needed to produce cholesterol. How they are regulated is largely unexplored territory, but there is growing evidence that enzymes beyond HMGCR serve as flux-controlling points. Here, we introduce some of the known regulatory mechanisms affecting enzymes beyond HMGCR and highlight the need to further investigate their control.  相似文献   

15.
Gestational diabetes mellitus (GDM) is associated with excessive oxidative stress which may affect placental vascular function. Cholesterol homeostasis is crucial for maintaining fetoplacental endothelial function. We aimed to investigate whether and how GDM affects cholesterol metabolism in human fetoplacental endothelial cells (HPEC). HPEC were isolated from fetal term placental arterial vessels of GDM or control subjects. Cellular reactive oxygen species (ROS) were detected by H2DCFDA fluorescent dye. Oxysterols were quantified by gas chromatography–mass spectrometry analysis. Genes and proteins involved in cholesterol homeostasis were detected by real-time PCR and immunoblotting, respectively. Cholesterol efflux was determined from [3H]-cholesterol labeled HPEC and [14C]-acetate was used as cholesterol precursor to measure cholesterol biosynthesis and esterification. We detected enhanced formation of ROS and of specific, ROS-derived oxysterols in HPEC isolated from GDM versus control pregnancies. ROS-generated oxysterols were simultaneously elevated in cord blood of GDM neonates. Liver-X receptor activation in control HPEC by synthetic agonist TO901319, 7-ketocholesterol, or 7β-hydroxycholesterol upregulated ATP-binding cassette transporters (ABC)A1 and ABCG1 expression, accompanied by increased cellular cholesterol efflux. Upregulation of ABCA1 and ABCG1 and increased cholesterol release to apoA-I and HDL3 (78?±?17%, 40?±?9%, respectively) were also observed in GDM versus control HPEC. The LXR antagonist GGPP reversed ABCA1 and ABCG1 upregulation and reduced the increased cholesterol efflux in GDM HPEC. Similar total cellular cholesterol levels were detected in control and GDM HPEC, while GDM enhanced cholesterol biosynthesis along with upregulated 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and sterol O-acyltransferase 1 (SOAT1) mRNA and protein levels. Our results suggest that in GDM cellular cholesterol homeostasis in the fetoplacental endothelium is modulated via LXR activation and helps to maintain its proper functionality.  相似文献   

16.
Non-alcoholic fatty liver disease (NAFLD), defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with or without co-exposure to ethanol.  相似文献   

17.
Soufi M  Ruppert V  Kurt B  Schaefer JR 《Gene》2012,499(1):218-222
Familial hypercholesterolemia (FH), Niemann-Pick disease type C (NPC) and Tangier disease (TD) are genetic inherited disorders with impaired processing of cholesterol, caused by mutations in genes that regulate cellular uptake, intracellular movement and transport of cholesterol. Various studies have shown a crucial regulatory role of the SREBP-pathway for cellular cholesterol homeostasis in these diseases. Since cholesterol is an essential structural component of cells, we assessed the impact of a severe FH causing LDLR mutation (FH p.W556R) on the SREBP pathway in primary FH fibroblasts. Primary FH fibroblasts derived from patients with the LDL receptor mutation p.W556R were used for gene expression experiments. Gene expression studies revealed increased expressions of SREBP regulated genes HMGCR, LDLR, SREBP-2, SREBP-1, SR-BI, INSIG-1, but interestingly not SCAP. In contrast expression of ABCA1, was strongly decreased in homozygous, but not in heterozygous p.W556R fibroblasts. Gene expression experiments with LDL receptor lacking primary FH fibroblasts, revealed that SR-BI and ABCA1 are important regulators for cholesterol acquisition in FH cells, consistent with findings in cells from NPC and TD patients.  相似文献   

18.
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, commonly known as statins, may possess cancer preventive and therapeutic properties. Statins are effective suppressors of cholesterol synthesis with a well-established risk-benefit ratio in cardiovascular disease prevention. Mechanistically, targeting HMGCR activity primarily influences cholesterol biosynthesis and prenylation of signaling proteins. Pravastatin is a hydrophilic statin that is selectively taken up by a sodium-independent organic anion transporter protein-1B1 (OATP1B1) exclusively expressed in liver. Simvastatin is a hydrophobic statin that enters cells by other mechanisms. Poorly-differentiated and well-differentiated cancer cell lines were selected from various tissues and examined for their response to these two statins. Simvastatin inhibited the growth of most tumor cell lines more effectively than pravastatin in a dose dependent manner. Poorly-differentiated cancer cells were generally more responsive to simvastatin than well-differentiated cancer cells, and the levels of HMGCR expression did not consistently correlate with response to statin treatment. Pravastatin had a significant effect on normal hepatocytes due to facilitated uptake and a lesser effect on prostate PC3 and colon Caco-2 cancer cells since the OATP1B1 mRNA and protein were only found in the normal liver and hepatocytes. The inhibition of cell growth was accompanied by distinct alterations in mitochondrial networks and dramatic changes in cellular morphology related to cofilin regulation and loss of p-caveolin. Both statins, hydrophilic pravastatin and hypdrophobic simvastatin caused redistribution of OATP1B1 and HMGCR to perinuclear sites. In conclusion, the specific chemical properties of different classes of statins dictate mechanistic properties which may be relevant when evaluating biological responses to statins.  相似文献   

19.
Mice with inactivation of the D-specific multifunctional protein 2 (MFP2), a crucial enzyme of peroxisomal beta-oxidation, develop multiple pathologies in diverse tissues already starting in the postnatal period. Gene expression profiling performed on liver of 2-day-old pups revealed up-regulation of PPAR alpha responsive genes in knockout mice. Surprisingly, also genes involved in cholesterol biosynthesis were markedly induced. Real-time PCR confirmed the induction of PPAR alpha target genes and of HMGCR and SREBP2, both involved in cholesterol synthesis, in lactating and in adult MFP2 knockout mice. In accordance, the rate of cholesterol biosynthesis was significantly increased in liver of knockout mice but the hepatic cholesterol concentration was unaltered. In MFP2/PPAR alpha double knockout mice, up-regulations of SREBP2 and HMGCR were markedly attenuated. These data demonstrate a tight interrelationship between induction of PPAR alpha by endogenous ligands and up-regulation of genes of cholesterol biosynthesis through increased expression of SREBP2.  相似文献   

20.
Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMG-CoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoprotein-triglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号