首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Leem YE  Choi HK  Jung SY  Kim BJ  Lee KY  Yoon K  Qin J  Kang JS  Kim ST 《Cellular signalling》2011,23(11):1876-1884
Esco2 is an acetyltransferase that is required for the establishment of sister chromatid cohesion. Roberts-SC phocomelia (RBS) syndrome caused by the mutations of Esco2 gene, is an autosomal recessive development disorder characterized by growth retardation, limb reduction and craniofacial abnormalities including cleft lip and palate. Here, we show that Esco2 protein co-immunoprecipitates with Notch but not with CBF1. Esco2 represses the transactivational activity of Notch protein in an acetyltransferase-independent manner. Chromatin immunoprecipitation experiments suggest that Esco2 might regulate the activity of NICD-CBF1 via attenuating NICD binding to CBF1 on the promoter of Hes1, the downstream target gene of Notch. Furthermore, we demonstrate that the overexpression of Esco2 promotes the neuronal differentiation of P19 embryonic carcinoma cells and C17.2 neural progenitor cells and the knockdown of Esco2 by siRNA blocks the differentiation. The inhibitory effects of Notch protein on neuronal differentiation of P19 cells was suppressed by Esco2 overexpression. Taken together, our study suggests that Esco2 may play an important role in neurogenesis by attenuating Notch signaling to promote neuronal differentiation.  相似文献   

2.
3.
4.
Hepatic gluconeogenesis and mitochondrial function during hibernation   总被引:1,自引:0,他引:1  
1. The aim of these studies was to investigate a mitochondrial basis for changes in gluconeogenesis during hibernation. 2. State 3 respiration rates in liver mitochondria from hibernating ground squirrels were reduced by 62-66%. The limiting reaction appeared to be electron transport, particularly in respiratory complex III. 3. The mitochondrial ATP + ADP + AMP content was reduced by 29% during hibernation; cellular adenine nucleotide content was unchanged. 4. Pyruvate carboxylation in intact mitochondria was decreased 75% during hibernation, although total pyruvate carboxylase activity was not lower. 5. Rates of gluconeogenesis in intact hepatocytes isolated from hibernators were lower than in cells from non-hibernators.  相似文献   

5.
MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN   总被引:1,自引:0,他引:1  
DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.  相似文献   

6.
7.
8.
Primordial germ cells (PGCs) and somatic cells originate from postimplantation epiblast cells in mice. As pluripotency is lost upon differentiation of somatic lineages, a naive epigenome and the pluripotency network are re‐established during PGC development. Here we demonstrate that Prdm14 contributes not only to PGC specification, but also to naive pluripotency in embryonic stem (ES) cells by repressing the DNA methylation machinery and fibroblast growth factor (FGF) signalling. This indicates a critical role for Prdm14 in programming PGCs and promoting pluripotency in ES cells.  相似文献   

9.
10.
11.
12.
MicroRNAs (miRNAs) are important regulators of mouse brain development. However, their precise roles in this context remain to be elucidated. Through screening of expression profiles from a miRNA microarray and experimental analysis, we show here that miR‐15b controls several aspects of cortical neurogenesis. miR‐15b inhibits cortical neural progenitor cell (NPC) proliferation and promotes cell‐cycle exit and neuronal differentiation. Additionally, miR‐15b expression decreases the number of apical progenitors and increases basal progenitors in the VZ/SVZ. We also show that miR‐15b binds to the 3′ UTR of TET3, which plays crucial roles during embryonic development by enhancing DNA demethylation. TET3 promotes cyclin D1 expression, and miR‐15b reduces TET3 expression and 5hmC levels. Notably, TET3 expression rescues miR‐15b‐induced impaired NPC proliferation and increased cell‐cycle exit in vivo. Our results not only reveal a link between miRNAs, TET, and DNA demethylation but also demonstrate critical roles for miR‐15b and TET3 in maintaining the NPC pool during early neocortical development.  相似文献   

13.
Dear Editor,Lipid droplets(LDs)are dynamic lipid-storage organelles of storage depots and sources of essential substrates for myriad cellular processes and protect cells from lipotoxicity(Ohsaki et al.,2006).Disrupted LD and fat storage homeostasis has been linked to metabolic diseases such as atherosclerosis,obesity,and type II diabetes(Levin et al.,2001).Structurally,the core of neutral lipids in LDs is surroun ded by a phospholipid mono layer and coated with specific proteins(Storey et al.,2011).Perilipin family of proteins are the predominant LD-associated proteins.  相似文献   

14.
In the adult heart, a variety of stresses induce re-expression of a fetal gene program in association with myocyte hypertrophy and heart failure. Here we show that histone deacetylase-2 (Hdac2) regulates expression of many fetal cardiac isoforms. Hdac2 deficiency or chemical histone deacetylase (HDAC) inhibition prevented the re-expression of fetal genes and attenuated cardiac hypertrophy in hearts exposed to hypertrophic stimuli. Resistance to hypertrophy was associated with increased expression of the gene encoding inositol polyphosphate-5-phosphatase f (Inpp5f) resulting in constitutive activation of glycogen synthase kinase 3beta (Gsk3beta) via inactivation of thymoma viral proto-oncogene (Akt) and 3-phosphoinositide-dependent protein kinase-1 (Pdk1). In contrast, Hdac2 transgenic mice had augmented hypertrophy associated with inactivated Gsk3beta. Chemical inhibition of activated Gsk3beta allowed Hdac2-deficient adults to become sensitive to hypertrophic stimulation. These results suggest that Hdac2 is an important molecular target of HDAC inhibitors in the heart and that Hdac2 and Gsk3beta are components of a regulatory pathway providing an attractive therapeutic target for the treatment of cardiac hypertrophy and heart failure.  相似文献   

15.
During corticogenesis, late-born callosal projection neurons (CPNs) acquire their laminar position through glia-guided radial migration and then undergo final differentiation. However, the mechanisms controlling radial migration and final morphology of CPNs are poorly defined. Here, we show that in COUP-TFI mutant mice CPNs are correctly specified, but are delayed in reaching the cortical plate and have morphological defects during migration. Interestingly, we observed that the rate of neuronal migration to the cortical plate normally follows a low-rostral to high-caudal gradient, similar to that described for COUP-TFI. This gradient is strongly impaired in COUP-TFI(-/-) brains. Moreover, the expression of the Rho-GTPase Rnd2, a modulator of radial migration, is complementary to both these gradients and strongly increases in the absence of COUP-TFI function. We show that COUP-TFI directly represses Rnd2 expression at the post-mitotic level along the rostrocaudal axis of the neocortex. Restoring correct Rnd2 levels in COUP-TFI(-/-) brains cell-autonomously rescues neuron radial migration and morphological transitions. We also observed impairments in axonal elongation and dendritic arborization of COUP-TFI-deficient CPNs, which were rescued by lowering Rnd2 expression levels. Thus, our data demonstrate that COUP-TFI modulates late-born neuron migration and favours proper differentiation of CPNs by finely regulating Rnd2 expression levels.  相似文献   

16.
17.
18.
19.
In zebrafish, cells at the lateral edge of the neural plate become Rohon-Beard primary sensory neurons or neural crest. Delta/Notch signaling is required for neural crest formation. ngn1 is expressed in primary neurons; inhibiting Ngn1 activity prevents Rohon-Beard cell formation but not formation of other primary neurons. Reducing Ngn1 activity in embryos lacking Delta/Notch signaling restores neural crest formation, indicating Delta/Notch signaling inhibits neurogenesis without actively promoting neural crest. Ngn1 activity is also required for later development of dorsal root ganglion sensory neurons; however, Rohon-Beard neurons and dorsal root ganglion neurons are not necessarily derived from the same precursor cell. We propose that temporally distinct episodes of Ngn1 activity in the same precursor population specify these two different types of sensory neurons.  相似文献   

20.
Alteration of tissue inhibitors of matrix metalloproteinases (TIMP)/matrix metalloproteinases (MMP) associated with collagen upregulation has an important role in sustained atrial fibrillation (AF). The expression of miR-146b-5p, whose the targeted gene is TIMPs, is upregulated in atrial cardiomyocytes during AF. This study was to determine whether miR-146b-5p could regulate the gene expression of TIMP4 and the contribution of miRNA to atrial fibrosis in AF. Collagen synthesis was observed after miR-146b-5p transfection in human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs)-fibroblast co-culture cellular model in vitro. Furthermore, a myocardial infarction (MI) mouse model was used to confirm the protective effect of miR-146b-5p downregulation on atrial fibrosis. The expression level of miR-146b-5p was upregulated, while the expression level of TIMP4 was downregulated in the fibrotic atrium of canine with AF. miR-146b-5p transfection in hiPSC-aCMs-fibroblast co-culture cellular model increased collagen synthesis by regulating TIMP4/MMP9 mediated extracellular matrix proteins synthesis. The inhibition of miR-146b-5p expression reduced the phenotypes of cardiac fibrosis in the MI mouse model. Fibrotic marker MMP9, TGFB1 and COL1A1 were significantly downregulated, while TIMP4 was significantly upregulated (at both mRNA and protein levels) by miR-146b-5p inhibition in cardiomyocytes of MI heart. We concluded that collagen fibres were accumulated in extracellular space on miR-146b-5p overexpressed co-culture cellular model. Moreover, the cardiac fibrosis induced by MI was attenuated in antagomiR-146 treated mice by increasing the expression of TIMP4, which indicated that the inhibition of miR-146b-5p might become an effective therapeutic approach for preventing atrial fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号