首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD) is a neurodegenerative disease displaying extracellular plaques formed by the neurotoxic amyloid β‐peptide (Aβ), and intracellular neurofibrillary tangles consisting of protein tau. However, how these pathologies relate to the massive neuronal death that occurs in AD brains remain elusive. Neprilysin is the major Aβ‐degrading enzyme and a lack thereof increases Aβ levels in the brain twofold. To identify altered protein expression levels induced by increased Aβ levels, we performed a proteomic analysis of the brain of the AD mouse model APPsw and compared it to that of APPsw mice lacking neprilysin. To this end we established an LC‐MS/MS method to analyze brain homogenate, using an 18O‐labeled internal standard to accurately quantify the protein levels. To distinguish between alterations in protein levels caused by increased Aβ levels and those induced by neprilysin deficiency independently of Aβ, the brain proteome of neprilysin deficient APPsw mice was also compared to that of neprilysin deficient mice. By this approach we identified approximately 600 proteins and the levels of 300 of these were quantified. Pathway analysis showed that many of the proteins with altered expression were involved in neurological disorders, and that tau, presenilin and APP were key regulators in the identified networks. The data have been deposited to the ProteomeXchange Consortium with identifiers PXD000968 and PXD001786 ( http://proteomecentral.proteomexchange.org/dataset/PXD000968 and ( http://proteomecentral.proteomexchange.org/dataset/PXD001786 ). Interestingly, the levels of several proteins, including some not previously reported to be linked to AD, were associated with increased Aβ levels.  相似文献   

2.
Alzheimer's disease (AD) is characterized by progressive cognitive impairment associated with accumulation of amyloid beta-peptide, synaptic degeneration and the death of neurons in the hippocampus, and temporal, parietal and frontal lobes of the cerebral cortex. Analysis of postmortem brain tissue from AD patients can provide information on molecular alterations present at the end of the disease process, but cannot discriminate between changes that are specifically involved in AD versus those that are simply a consequence of neuronal degeneration. Animal models of AD provide the opportunity to elucidate the molecular changes that occur in brain cells as the disease process is initiated and progresses. To this end, we used the 3xTgAD mouse model of AD to gain insight into the complex alterations in proteins that occur in the hippocampus and cortex in AD. The 3xTgAD mice express mutant presenilin-1, amyloid precursor protein and tau, and exhibit AD-like amyloid and tau pathology in the hippocampus and cortex, and associated cognitive impairment. Using the iTRAQ stable-isotope-based quantitative proteomic technique, we performed an in-depth proteomic analysis of hippocampal and cortical tissue from 16 month old 3xTgAD and non-transgenic control mice. We found that the most important groups of significantly altered proteins included those involved in synaptic plasticity, neurite outgrowth and microtubule dynamics. Our findings have elucidated some of the complex proteome changes that occur in a mouse model of AD, which could potentially illuminate novel therapeutic avenues for the treatment of AD and other neurodegenerative disorders.  相似文献   

3.
Park YD  Jang HS  Kim SY  Ko SK  Lyou YJ  Lee DY  Paik YK  Yang JM 《Proteomics》2006,6(4):1362-1370
Recently, we reported altered protein expression in primary cultured fibroblasts from atopic dermatitis (AD) patients. As a sequential study, we conducted proteomic analysis of primary keratinocytes derived from AD patients to further identify AD-related proteins. Three pH ranges, 4-7, 6-9, and 7-11, were used to profile the altered protein expression in AD. We obtained 46 candidate spots from the 2-D gel image analysis: 18 proteins were up-regulated and 27 proteins were down-regulated. Among the several important candidate proteins, NCC27 showed the same profile of a defect in PTM in both AD-derived keratinocytes and fibroblasts. On the basis of current and previous reports, real-time PCR was performed on select candidate genes to compare RNA and protein expression levels in AD-derived keratinocytes and fibroblasts. Our results provide new clues to aid in understanding the mechanism of atopic alterations in keratinocytes and suggest new AD-associated proteins that are important in AD pathogenesis.  相似文献   

4.

Background

The complicated cellular and biochemical changes that occur in brain during Alzheimer’s disease are poorly understood. In a previous study we used an unbiased label-free quantitative mass spectrometry-based proteomic approach to analyze these changes at a systems level in post-mortem cortical tissue from patients with Alzheimer’s disease (AD), asymptomatic Alzheimer’s disease (AsymAD), and controls. We found modules of co-expressed proteins that correlated with AD phenotypes, some of which were enriched in proteins identified as risk factors for AD by genetic studies.

Methods

The amount of information that can be obtained from such systems-level proteomic analyses is critically dependent upon the number of proteins that can be quantified across a cohort. We report here a new proteomic systems-level analysis of AD brain based on 6,533 proteins measured across AD, AsymAD, and controls using an analysis pipeline consisting of isobaric tandem mass tag (TMT) mass spectrometry and offline prefractionation.

Results

Our new TMT pipeline allowed us to more than double the depth of brain proteome coverage. This increased depth of coverage greatly expanded the brain protein network to reveal new protein modules that correlated with disease and were unrelated to those identified in our previous network. Differential protein abundance analysis identified 350 proteins that had altered levels between AsymAD and AD not caused by changes in specific cell type abundance, potentially reflecting biochemical changes that are associated with cognitive decline in AD. RNA binding proteins emerged as a class of proteins altered between AsymAD and AD, and were enriched in network modules that correlated with AD pathology. We developed a proteogenomic approach to investigate RNA splicing events that may be altered by RNA binding protein changes in AD. The increased proteome depth afforded by our TMT pipeline allowed us to identify and quantify a large number of alternatively spliced protein isoforms in brain, including AD risk factors such as BIN1, PICALM, PTK2B, and FERMT2. Many of the new AD protein network modules were enriched in alternatively spliced proteins and correlated with molecular markers of AD pathology and cognition.

Conclusions

Further analysis of the AD brain proteome will continue to yield new insights into the biological basis of AD.
  相似文献   

5.

Background

Alzheimer’s disease (AD) is the most common type of dementia affecting people over 65 years of age. The hallmarks of AD are the extracellular deposits known as amyloid β plaques and the intracellular neurofibrillary tangles, both of which are the principal players involved in synaptic loss and neuronal cell death. Tau protein and Aβ fragment 1–42 have been investigated so far in cerebrospinal fluid as a potential AD biomarkers. However, an urgent need to identify novel biomarkers which will capture disease in the early stages and with better specificity remains. High-throughput proteomic and pathway analysis of hippocampal tissue provides a valuable source of disease-related proteins and biomarker candidates, since it represents one of the earliest affected brain regions in AD.

Results

In this study 2954 proteins were identified (with at least 2 peptides for 1203 proteins) from both control and AD brain tissues. Overall, 204 proteins were exclusively detected in AD and 600 proteins in control samples. Comparing AD and control exclusive proteins with cerebrospinal fluid (CSF) literature-based proteome, 40 out of 204 AD related proteins and 106 out of 600 control related proteins were also present in CSF. As most of these proteins were extracellular/secretory origin, we consider them as a potential source of candidate biomarkers that need to be further studied and verified in CSF samples.

Conclusions

Our semiquantitative proteomic analysis provides one of the largest human hippocampal proteome databases. The lists of AD and control related proteins represent a panel of proteins potentially involved in AD pathogenesis and could also serve as prospective AD diagnostic biomarkers.  相似文献   

6.
The amyloid precursor protein (APP) was assumed to be an important neuron-morphoregulatory protein and plays a central role in Alzheimer's disease (AD) pathology. In the study presented here, we analyzed the APP-transgenic mouse model APP23 using 2-dimensional gel electrophoresis technology in combination with DIGE and mass spectrometry. We investigated cortex and hippocampus of transgenic and wildtype mice at 1, 2, 7 and 15 months of age. Furthermore, cortices of 16 days old embryos were analyzed. When comparing the protein patterns of APP23 with wildtype mice, we detected a relatively large number of altered protein spots at all age stages and brain regions examined which largely preceded the occurrence of amyloid plaques. Interestingly, in hippocampus of adolescent, two-month old mice, a considerable peak in the number of protein changes was observed. Moreover, when protein patterns were compared longitudinally between age stages, we found that a large number of proteins were altered in wildtype mice. Those alterations were largely absent in hippocampus of APP23 mice at two months of age although not in other stages compared. Apparently, the large difference in the hippocampal protein patterns between two-month old APP23 and wildtype mice was caused by the absence of distinct developmental changes in the hippocampal proteome of APP23 mice. In summary, the absence of developmental proteome alterations as well as a down-regulation of proteins related to plasticity suggest the disturption of a normally occurring peak of hippocampal plasticity during adolescence in APP23 mice. Our findings are in line with the observation that AD is preceded by a clinically silent period of several years to decades. We also demonstrate that it is of utmost importance to analyze different brain regions and different age stages to obtain information about disease-causing mechanisms.  相似文献   

7.
To elucidate the molecular events involved in early ischemic neuronal death, we performed two-dimensional proteome profiling of primary cultures of rat cortical neurons following chemical ischemia induced by the administration of sodium azide under glucose-free conditions. Using a lactic dehydrogenase assay and Western blot analysis of dephosporylation of the voltage-gated potassium channel Kv2.1, we determined duration of chemical ischemia of 2 h to be the relevant time-point for early ischemic neuronal death. Sixty-one proteins were differentially expressed, and 26 different proteins were identified by MALDI-TOF with Mascot database searching. The proteome data indicated that chemical ischemia altered the expression of 20 proteins that are involved in stress response/chaperone, brain development, cytoskeletal/structural proteins, metabolic enzymes, and calcium ion homeostasis. Western blotting and immunocytochemical studies of the 6-most functionally significant proteins showed that, in the ischemia-treated group, the expression of glucose-related protein 78, heat shock protein 90 alpha, and α-enolase was significantly increased, while the expression of inositol triphosphate receptor 1 and ATP synthase beta subunit was decreased. In addition, the expression of dihydropyrimidinase-like 3 showed a truncated pattern in the ischemia group. The changes in the expression of these proteins might be significant indicators of early ischemic neuronal death.  相似文献   

8.
Numerous studies have shown that drugs of abuse induce changes in protein expression in the brain that are thought to play a role in synaptic plasticity. Drug-induced plasticity can be mediated by changes at the synapse and more specifically at the postsynaptic density (PSD), which receives and transduces synaptic information. To date, the majority of studies examining synaptic protein profiles have focused on identifying the synaptic proteome. Only a handful of studies have examined the changes in synaptic profile by drug administration. We applied a quantitative proteomics analysis technique with the cleavable ICAT reagent to quantitate relative changes in protein levels of the hippocampal PSD in response to morphine administration. We identified a total of 102 proteins in the mouse hippocampal PSD. The majority of these were signaling, trafficking, and cytoskeletal proteins involved in synaptic plasticity, learning, and memory. Among the proteins whose levels were found to be altered by morphine administration, clathrin levels were increased to the largest extent. Immunoblotting and electron microscopy studies showed that this increase was localized to the PSD. Morphine treatment was also found to lead to a local increase in two other components of the endocytic machinery, dynamin and AP-2, suggesting a critical involvement of the endocytic machinery in the modulatory effects of morphine. Because alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are thought to undergo clathrin-mediated endocytosis, we examined the effect of morphine administration on the association of the AMPA receptor subunit, GluR1, with clathrin. We found a substantial decrease in the levels of GluR1 associated with clathrin. Taken together, these results suggest that, by causing a redistribution of endocytic proteins at the synapse, morphine modulates synaptic plasticity at hippocampal glutamatergic synapses.  相似文献   

9.
Brain cyclooxygenase-2 (COX-2), the rate-limiting enzyme in prostaglandin synthesis, is rapidly and transiently induced by convulsions in hippocampal and cortical neurons. Therefore, we examined the effects of COX-2 on the 'rapid kindling' development in COX-2 knockout mice and in mice treated with nimesulide, a COX-2-selective inhibitor. Rapid kindling development was examined based on the incidence of hippocampal EEG seizures and behavioral seizures following repetitive electrical stimulation of the perforant path at an interval of 40 s, and on the total afterdischarge (AD) duration induced by 50 stimulations. In addition, we measured COX-2 mRNA expression by in situ hybridization and PGE2 concentration using enzyme immunoassay following rapid kindling stimulation. The results suggested that brain COX-2 mRNA levels were markedly increased in the hippocampal neurons and the concentration of PGE2 was elevated significantly, and that the incidence of AD and seizure behavior induction and the total AD duration were significantly decreased under conditions of COX-2 deficiency. Therefore, we concluded that inducible COX-2 facilitates the recurrence of hippocampal seizures.  相似文献   

10.
Recent studies demonstrated that the antihypertensive drug Valsartan improved spatial and episodic memory in mouse models of Alzheimer’s Disease (AD) and human subjects with hypertension. However, the molecular mechanism by which Valsartan can regulate cognitive function is still unknown. Here, we investigated the effect of Valsartan on dendritic spine formation in primary hippocampal neurons, which is correlated with learning and memory. Interestingly, we found that Valsartan promotes spinogenesis in developing and mature neurons. In addition, we found that Valsartan increases the puncta number of PSD-95 and trends toward an increase in the puncta number of synaptophysin. Moreover, Valsartan increased the cell surface levels of AMPA receptors and selectively altered the levels of spinogenesis-related proteins, including CaMKIIα and phospho-CDK5. These data suggest that Valsartan may promote spinogenesis by enhancing AMPA receptor trafficking and synaptic plasticity signaling.  相似文献   

11.
PET scan analysis demonstrated the early reduction of cerebral glucose metabolism in Alzheimer disease (AD) patients that can make neurons vulnerable to damage via the alteration of the hexosamine biosynthetic pathway (HBP). Defective HBP leads to flawed protein O-GlcNAcylation coupled, by a mutual inverse relationship, with increased protein phosphorylation on Ser/Thr residues. Altered O-GlcNAcylation of Tau and APP have been reported in AD and is closely related with pathology onset and progression. In addition, type 2 diabetes patients show an altered O-GlcNAcylation/phosphorylation that might represent a link between metabolic defects and AD progression. Our study aimed to decipher the specific protein targets of altered O-GlcNAcylation in brain of 12-month-old 3×Tg-AD mice compared with age-matched non-Tg mice. Hence, we analysed the global O-GlcNAc levels, the levels and activity of OGT and OGA, the enzymes controlling its cycling and protein specific O-GlcNAc levels using a bi-dimensional electrophoresis (2DE) approach. Our data demonstrate the alteration of OGT and OGA activation coupled with the decrease of total O-GlcNAcylation levels. Data from proteomics analysis led to the identification of several proteins with reduced O-GlcNAcylation levels, which belong to key pathways involved in the progression of AD such as neuronal structure, protein degradation and glucose metabolism. In parallel, we analysed the O-GlcNAcylation/phosphorylation ratio of IRS1 and AKT, whose alterations may contribute to insulin resistance and reduced glucose uptake. Our findings may contribute to better understand the role of altered protein O-GlcNAcylation profile in AD, by possibly identifying novel mechanisms of disease progression related to glucose hypometabolism.  相似文献   

12.
Heat shock proteins (Hsps) are a set of molecular chaperones involved in cellular repair. They provide protective mechanisms that allow cells to survive potentially lethal insults, In response to a conditioning stress their expression is increased. Here we examined the connection between Hsps and Aβ(42), the amyloid peptide involved in the pathological sequence of Alzheimer's disease (AD). Extracellular Aβ(42) associates with neuronal cells and is a major constituent of senile plaques, one of the hallmarks of AD. Although Hsps are generally thought to prevent accumulation of misfolded proteins, there is a lack of mechanistic evidence that heat shock chaperones directly modulate Aβ(42) toxicity. In this study we show that neither extracellular Aβ(42) nor Aβ(42/)PrP(C) trigger the heat shock response in neurons. To address the influence of the neuroprotective heat shock response on cellular Aβ(42), Western analysis of Aβ(42) was performed following external Aβ(42) application. Five hours after a conditioning heat shock, Aβ(42) association with CAD cells was increased compared to control neurons. However, at forty-eight hours following heat shock Aβ(42) levels were reduced compared to that found for control cells. Moreover, transient transfection of the stress induced Hsp40, decreased CAD levels of Aβ(42). In contrast to CAD cells, hippocampal neurons transfected with Hsp40 retained Aβ(42) indicating that Hsp40 modulation of Aβ(42) proteostasis is cell specific. Mutation of the conserved HPD motif within Hsp40 significantly reduced the Hsp40-mediated Aβ(42) increase in hippocampal cultures indicating the importance of this motif in regulating cellular Aβ(42). Our data reveal a biochemical link between Hsp40 expression and Aβ(42) proteostasis that is cell specific. Therefore, increasing Hsp40 therapeutically with the intention of interfering with the pathogenic cascade leading to neurodegeneration in AD should be pursued with caution.  相似文献   

13.
The Niemann-Pick type C1 (NPC1) protein mediates the trafficking of cholesterol from lysosomes to other organelles. Mutations in the NPC1 gene lead to the retention of cholesterol and other lipids in the lysosomal compartment, and such defects are the basis of NPC disease. Several parallels exist between NPC disease and Alzheimer's disease (AD), including altered cholesterol homeostasis, changes in the lysosomal system, neurofibrillary tangles, and increased amyloid-beta generation. How the expression of NPC1 in the human brain is affected in AD has not been investigated so far. In the present study, we measured NPC1 mRNA and protein expression in three distinct regions of the human brain, and we revealed that NPC1 expression is upregulated at both mRNA and protein levels in the hippocampus and frontal cortex of AD patients compared to control individuals. In the cerebellum, a brain region that is relatively spared in AD, no difference in NPC1 expression was detected. Similarly, murine NPC1 mRNA levels were increased in the hippocampus of 12-month-old transgenic mice expressing a familial AD form of human amyloid-beta precursor protein (APP) and presenilin-1 (APP/PS1tg) compared to 12-month-old wild type mice, whereas no change in NPC1 was detected in mouse cerebellum. Immunohistochemical analysis of human hippocampus indicated that NPC1 expression was strongest in neurons. However, in vitro studies revealed that NPC1 expression was not induced by transfecting SK-N-SH neurons with human APP or by treating them with oligomeric amyloid-beta peptide. Total cholesterol levels were reduced in hippocampus from AD patients compared to control individuals, and it is therefore possible that the increased expression of NPC1 is linked to perturbed cholesterol homeostasis in AD.  相似文献   

14.
The tumor necrosis factor (TNF)-alpha converting enzyme (TACE) can cleave the cell-surface ectodomain of the amyloid-beta precursor protein (APP), thus decreasing the generation of amyloid-beta (Abeta) by cultured non-neuronal cells. While the amyloidogenic processing of APP in neurons is linked to the pathogenesis of Alzheimer's disease (AD), the expression of TACE in neurons has not yet been examined. Thus, we assessed TACE expression in a series of neuronal and non-neuronal cell types by Western blots. We found that TACE was present in neurons and was only faintly detectable in lysates of astrocytes, oligodendrocytes, and microglial cells. Immunohistochemical analysis was used to determine the cellular localization of TACE in the human brain, and its expression was detected in distinct neuronal populations, including pyramidal neurons of the cerebral cortex and granular cell layer neurons in the hippocampus. Very low levels of TACE were seen in the cerebellum, with Purkinje cells at the granular-molecular boundary staining faintly. Because TACE was localized predominantly in areas of the brain that are affected by amyloid plaques in AD, we examined its expression in a series of AD brains. We found that AD and control brains showed similar levels of TACE staining, as well as similar patterns of TACE expression. By double labeling for Abeta plaques and TACE, we found that TACE-positive neurons often colocalized with amyloid plaques in AD brains. These observations support a neuronal role for TACE and suggest a mechanism for its involvement in AD pathogenesis as an antagonist of Abeta formation.  相似文献   

15.
16.
A growing body of evidence suggests a role for soluble alpha-amyloid precursor protein (sAPPalpha) in pathomechanisms of Alzheimer disease (AD). This cleavage product of APP was identified to have neurotrophic properties. However, it remained enigmatic what proteins, targeted by sAPPalpha, might be involved in such neuroprotective actions. Here, we used high-resolution two-dimensional polyacrylamide gel electrophoresis to analyze proteome changes downstream of sAPPalpha in neurons. We present evidence that sAPPalpha regulates expression and activity of CDK5, a kinase that plays an important role in AD pathology. We also identified the cytoprotective chaperone ORP150 to be induced by sAPPalpha as part of this protective response. Finally, we present functional evidence that the sAPPalpha receptor SORLA is essential to mediate such molecular functions of sAPPalpha in neurons.  相似文献   

17.
Claudins (Cls) are a multigene family of transmembrane proteins with different tissue distribution, which have an essential role in the formation and sealing capacity of tight junctions (TJs). At the level of the blood–brain barrier (BBB), TJs are the main molecular structures which separate the neuronal milieu from the circulatory space, by a restriction of the paracellular flow of water, ions and larger molecules into the brain. Different studies suggested recently significant BBB alterations in both vascular and degenerative dementia types. In a previous study we found in Alzheimer’s disease (AD) and vascular dementia (VaD) brains an altered expression of occludin, a molecular partner of Cls in the TJs structure. Therefore in this study, using an immunohistochemical approach, we investigated the expression of Cl family proteins (Cl‐2, Cl‐5 and Cl‐11) in frontal cortex of aged control, AD and VaD brains. To estimate the number of Cl‐expressing cells, we applied a random systematic sampling and the unbiased optical fractionator method. We found selected neurons, astrocytes, oligodendrocytes and endothelial cells expressing Cl‐2, Cl‐5 and Cl‐11 at detectable levels in all cases studied. We report a significant increase in ratio of neurons expressing Cl‐2, Cl‐5 and Cl‐11 in both AD and VaD as compared to aged controls. The ratio of astrocytes expressing Cl‐2 and Cl‐11 was significantly higher in AD and VaD as compared to aged controls. The ratio of oligodendrocytes expressing Cl‐11 was significantly higher in AD and the ratio of oligodendrocytes expressing Cl‐2 was significantly higher in VaD as compared to aged controls. Within the cerebral cortex, Cls were selectively expressed by pyramidal neurons, which are the ones responsible for cognitive processes and affected by AD pathology. Our findings suggest a new function of Cl family proteins which might be linked to response to cellular stress.  相似文献   

18.
Disruption of intracellular calcium homeostasis precedes the neurodegeneration that occurs in Alzheimer disease (AD). Of the many neuronal calcium-regulating proteins, we focused on endoplasmic reticulum (ER)-resident ryanodine receptors (RyRs) because they are increased in the hippocampus of mice expressing mutant presenilin-1 and are associated with neurotoxicity. Others have observed that ryanodine binding is elevated in human postmortem hippocampal regions suggesting that RyR(s) are involved in AD pathogenesis. Here we report that extracellular amyloid-beta(Abeta)-(1-42) specifically increased RyR-3, but not RyR-1 or RyR-2, gene expression in cortical neurons from C57Bl6 mice. Furthermore, endogenously produced Abeta-(1-42) increased RyR-3 mRNA and protein in cortical neurons from transgenic (Tg)CRND8 mice, a mouse model of AD. Increased RyR-3 mRNA and protein was also observed in brain tissue from 4- to 4.5-month-old Tg animals compared with non-Tg littermate controls. In experiments performed in nominal extracellular calcium, neurons from Tg mice had significant increases in intracellular calcium following ryanodine or glutamate treatment compared with littermate controls, which was abolished by treatment with small interfering RNA directed to RyR-3, indicating that the higher levels of calcium originated from RyR-3-regulated stores. Taken together, these observations suggest that Abeta-(1-42)-mediated changes in intracellular calcium homeostasis is regulated in part through a direct increase of RyR-3 expression and function.  相似文献   

19.
During the progression of Alzheimer's disease (AD), hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB) III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF) receptor tyrosine kinase B (TrkB), mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression.  相似文献   

20.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by extracellular deposits of fibrillar aggregates of amyloid-β peptide (Aβ). Levels of docosahexaenoic acid (DHA, 22:6n-3), the major fatty acid component of the neuronal membrane, are reduced in the AD hippocampus. We hypothesized that hippocampal neurons with reduced DHA levels would be more susceptible to aggregated Aβ-induced death and that this might be overcome by increasing hippocampal neuronal DHA levels. Embryonic Day 18 rat hippocampal cells were cultured in neurobasal medium with B27 supplemented with 0–100 μM DHA for 8 days, then were treated with 5 μM aggregated Aβ42 for 1 day. We found that supplementation with 5–10 μM DHA, which resulted in hippocampal neuron DHA levels of 12–16% of total fatty acids, was optimal for primary hippocampal neuronal survival, whereas supplementation with 5 or 25 μM DHA attenuated aggregated Aβ42-induced neurotoxicity and protected hippocampal neurons, with 25 μM DHA being more effective. DHA supplementation also resulted in significant up-regulation of expression of tyrosine tubulin and acetylated tubulin. We suggest that hippocampal neuronal DHA levels may be critical for AD prevention by attenuating the neurotoxicity induced by Aβ and in maintaining hippocampal neuron survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号