首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The efficiencies of membrane pore formation by 14 naturally occurring peptaibols and two structurally modified ampullosporins were compared using an artificial bilayer membrane model. Major differences were found in the dependence on peptide sequences and the constituting amino acids. Alamethicin F-30, chrysospermins C/D, paracelsin and texenomycin A displayed higher activity by several orders of magnitude in comparison with smaller peptaibols containing < 17 amino acids such as ampullosporins, trichofumins. bergofungins and cephaibols. Biological activities such as the induction of pigment formation by the fungus Phoma destructiva and long acting hypothermia and depression of locomotor activity in mice were correlated with moderate membrane permeabilization. No or weak membrane activities corresponded with biological inactivity. Highly membrane-active structures such as alamethicin F-30, chrysospermin C, texenomycin A and paracelsin A displayed antibiotic effects against the fungus and toxicity in mice.  相似文献   

2.
Energetics of pore formation induced by membrane active peptides   总被引:8,自引:0,他引:8  
Lee MT  Chen FY  Huang HW 《Biochemistry》2004,43(12):3590-3599
Antimicrobial peptides are known to form pores in cell membranes. We study this process in model bilayers of various lipid compositions. We use two of the best-studied peptides, alamethicin and melittin, to represent peptides making two types of pores, that is, barrel-stave pores and toroidal pores. In both cases, the key control variable is the concentration of the bound peptides in the lipid bilayers (expressed in the peptide-lipid molar ratio, P/L). The method of oriented circular dichroism (OCD) was used to monitor the peptide orientation in bilayers as a function of P/L. The same samples were scanned by X-ray diffraction to measure the bilayer thickness. In all cases, the bilayer thickness decreases linearly with P/L and then levels off after P/L exceeds a lipid-dependent critical value, (P/L)*. OCD spectra showed that the helical peptides are oriented parallel to the bilayers as long as P/L < (P/L)*, but as P/L increases over (P/L)*, an increasing fraction of peptides changed orientation to become perpendicular to the bilayer. We analyzed the data by assuming an internal membrane tension associated with the membrane thinning. The free energy containing this tension term leads to a relation explaining the P/L-dependence observed in the OCD and X-ray diffraction measurements. We extracted the experimental parameters from this thermodynamic relation. We believe that they are the quantities that characterize the peptide-lipid interactions related to the mechanism of pore formation. We discuss the meaning of these parameters and compare their values for different lipids and for the two different types of pores. These experimental parameters are useful for further molecular analysis and are excellent targets for molecular dynamic simulation studies.  相似文献   

3.
Direct imaging of the interaction of the apoptotic protein, Bax, with membrane bilayers shows the presence of toroidal-shaped pores using atomic force microscopy. These pores are sufficiently large to allow passage of proteins from the intermitochondrial space. Both the perturbation of the membrane and the amount of protein bound to the bilayer are increased in the presence of calcium. The results from the imaging are consistent with leakage studies from liposomes of the same composition. The work shows that Bax by itself can form pores in membrane bilayers.  相似文献   

4.
The pore-forming antibacterial peptide magainin 2 was made divalent, tetravalent, and octavalent via a copper(I)-mediated 1-3 dipolar cycloaddition reaction ("click" chemistry). This series of pore-forming compounds was tested in vitro for their ability to form pores in large unilamillar vesicles (LUVs). A large increase in the pore-forming capability was especially observed with the tetravalent and octavalent magainin compounds in the LUVs consisting of DOPC, and the octavalent magainin compound showed a marked increase with the DOPC/DOPG LUVs. Activity was observed in the low nanomolar range for these compounds.  相似文献   

5.
The metabolic signaling pathways that drive pathologic tissue inflammation and damage in humans with pulmonary tuberculosis (TB) are not well understood. Using combined methods in plasma high-resolution metabolomics, lipidomics and cytokine profiling from a multicohort study of humans with pulmonary TB disease, we discovered that IL-1β-mediated inflammatory signaling was closely associated with TCA cycle remodeling, characterized by accumulation of the proinflammatory metabolite succinate and decreased concentrations of the anti-inflammatory metabolite itaconate. This inflammatory metabolic response was particularly active in persons with multidrug-resistant (MDR)-TB that received at least 2 months of ineffective treatment and was only reversed after 1 year of appropriate anti-TB chemotherapy. Both succinate and IL-1β were significantly associated with proinflammatory lipid signaling, including increases in the products of phospholipase A2, increased arachidonic acid formation, and metabolism of arachidonic acid to proinflammatory eicosanoids. Together, these results indicate that decreased itaconate and accumulation of succinate and other TCA cycle intermediates is associated with IL-1β-mediated proinflammatory eicosanoid signaling in pulmonary TB disease. These findings support host metabolic remodeling as a key driver of pathologic inflammation in human TB disease.  相似文献   

6.
  1. Download : Download high-res image (119KB)
  2. Download : Download full-size image
  相似文献   

7.
Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMDNterm) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMDNterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMDNterm inserts and assembles in membranes. We observe GSDMDNterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMDNterm assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM, we monitor how GSDMDNterm assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMDNterm transmembrane pore assembly, which is likely shared within the gasdermin protein family.  相似文献   

8.
The role of hyaluronan in the pulmonary alveolus   总被引:6,自引:0,他引:6  
The duplex nature of the lining of the pulmonary alveolus has long been appreciated. It appears that surfactant is present at the interface with air where it prevents the collapse of the alveolus by lowering surface tension and that the surfactant rests on an aqueous subphase. This subphase has enough structure to form a smooth, continuous surface over the projections of the epithelial cells and because of its hydrophilic nature it attracts the polar heads of surfactant phospholipids. The chemical composition of the subphase has not been addressed. Type II cells in the wall of the alveolus are specialized to produce surfactant and they also secrete hyaluronan (hyaluronic acid) into the subphase. In solution, molecules of hyaluronan appear to be flexible coils which self-aggregate. The resulting solutions are quite viscous and exhibit non-Newtonian behavior. Hyaluronan binds to cell surface receptors and to proteins in the extracellular matrix. The networks formed with self-aggregated hyaluronan with or without proteins create gels whose properties depend largely upon the molecular weight of the hyaluronan and its concentration. Hyaluronan is also known to interact with phospholipids and has hydrophobic regions which could bind to the hydrophobic surfactant proteins B and C. The working hypothesis presented herein states that hyaluronan interacts with itself and with proteins in the subphase to form a hydrophilic gel. At the epithelial cell layer the components are concentrated due to tethered HA molecules and the gel smooths over cell projections. At the air interface the components are so dilute that a layer which is essentially water is present. The surfactant phospholipids spread on the water. Direct interactions of HA and surfactant phospholipids may also occur and contribute to the stability of the surfactant layer.  相似文献   

9.
We have investigated the ATP-induced permeabilization of rat peritoneal mast cells using three different techniques: (a) by measuring uptake of fluorescent membrane and DNA marker dyes, (b) by voltage-clamp measurements using the patch-clamp technique, and (c) by measurements of exocytosis in response to entry of Ca2+ and GTP gamma S into permeabilized cells. In the absence of divalent cations cells become highly permeable at ATP concentrations as low as 3 microM. In normal saline containing 1 mM MgCl2 and 2 mM CaCl2, dye uptake and electric conductance are detectable at 100 microM ATP corresponding to 4 microM ATP4-. The permeabilization is half-maximal at an ATP4- concentration of 5-20 microM with a Hill coefficient near 2. The ATP-induced whole-cell conductance at saturating ATP concentrations was 35-70 nS, exhibiting only weak cation selectivity. The activation is very fast with a time constant less than or equal to 65 ms. Pores which are large enough to allow for permeation of substances of 300-900 D are expected to have a unit conductance of approximately 200-400 pS. However, in whole cells as well as outside-out patches, discrete openings and closings of channels could not be observed at a resolution of approximately 40 pS and the single-channel conductance obtained from noise analysis is approximately 2-10 pS. Entry of Ca2+ into cells permeabilized with ATP stimulates exocytosis at low but not at high ATP concentrations indicating loss of an essential intracellular component or components at a high degree of permeabilization. This inactivation is removed when GTP gamma S is provided in the medium and this leads to enhanced exocytosis. The enhancement only occurs at high ATP concentrations. These results strongly suggest that the ATP-induced pores are of variable size and can increase or decrease by very small units.  相似文献   

10.
11.
12.
Pyroptosis is a lytic type of cell death that is initiated by inflammatory caspases. These caspases are activated within multi‐protein inflammasome complexes that assemble in response to pathogens and endogenous danger signals. Pyroptotic cell death has been proposed to proceed via the formation of a plasma membrane pore, but the underlying molecular mechanism has remained unclear. Recently, gasdermin D (GSDMD), a member of the ill‐characterized gasdermin protein family, was identified as a caspase substrate and an essential mediator of pyroptosis. GSDMD is thus a candidate for pyroptotic pore formation. Here, we characterize GSDMD function in live cells and in vitro. We show that the N‐terminal fragment of caspase‐1‐cleaved GSDMD rapidly targets the membrane fraction of macrophages and that it induces the formation of a plasma membrane pore. In vitro, the N‐terminal fragment of caspase‐1‐cleaved recombinant GSDMD tightly binds liposomes and forms large permeability pores. Visualization of liposome‐inserted GSDMD at nanometer resolution by cryo‐electron and atomic force microscopy shows circular pores with variable ring diameters around 20 nm. Overall, these data demonstrate that GSDMD is the direct and final executor of pyroptotic cell death.  相似文献   

13.
The antibiotic peptide nisin is the first known lantibiotic that uses a docking molecule within the bacterial cytoplasmic membrane for pore formation. Through specific interaction with the cell wall precursor lipid II, nisin forms defined pores which are stable for seconds and have pore diameters of 2 to 2.5 nm.  相似文献   

14.
Proteolytic activation of receptor-bound protective antigen (PA) at the cell surface removes PA20, allowing PA63 to oligomerize and form a ring-shaped heptameric prepore. The prepore binds edema factor (EF) and lethal factor (LF) and, after endocytosis and trafficking of the complex to an acidic, vesicular compartment, it undergoes membrane insertion and mediates translocation of EF/LF to the cytosol. Data from membrane conductance experiments support a model of membrane insertion in which the 2β2–2β3 loop of PA, which is disordered in native PA and the prepore, forms a 14-stranded transmembrane β-barrel. Recent studies on the process of prepore-to-pore conversion and our current understanding of the mechanism of pH-dependent translocation will be described.  相似文献   

15.
We have investigated the permeabilization of POPC unilamellar vesicle bilayers upon the addition of melittin. This process was measured in an early time range of a few minutes by means of monitoring the release of an entrapped marker, the self-quenching fluorescent dye carboxyfluorescein. Pore formation is indicated by an apparent 'all-or-none' efflux out of individual vesicles and a higher than linear dependence on melittin concentration. Applying a recently developed evaluation procedure, the data are readily converted into the gross number of pores per vesicle formed within the elapsed measuring time t. The results can be generally described in terms of a fast initial rate of pore formation that slows down to a much lower value after a period of about 1 to 2 minutes, following a single exponential time course. The three rate parameters involved are shown to be power functions of the concentration of melittin that is actually associated with the vesicle membrane. These findings are in excellent quantitative agreement with a proposed scheme of reaction steps where the formation of lipid associated peptide dimers becomes rate determining once an initial fast deposit is exhausted.  相似文献   

16.
Comparative electron microscopic studies of lung alveolar macrophage (LAM) ultrastructure (with their surface architectonics) were performed in transmission and scan regimen in 3 groups of animals: in intact rats and in rats 12 and 24 hours after a single intragastric administration of nitrosodimethylamine at a concentration of 30 mg/kg in one case and of 50% ethanol (2 ml per 100 g animal weight) in the other case. The transformation of cytoplasmic excrescences, manifested in their diminution, twisting and fusion resulted in the formation of fold-hilly LAM surface. The data obtained may be used for the elaboration of criteria for the assessment of environmental effects of toxic factors.  相似文献   

17.
The human pathogen Streptococcus pneumoniae produces soluble pneumolysin monomers that bind host cell membranes to form ring-shaped, oligomeric pores. We have determined three-dimensional structures of a helical oligomer of pneumolysin and of a membrane-bound ring form by cryo-electron microscopy. Fitting the four domains from the crystal structure of the closely related perfringolysin reveals major domain rotations during pore assembly. Oligomerization results in the expulsion of domain 3 from its original position in the monomer. However, domain 3 reassociates with the other domains in the membrane pore form. The base of domain 4 contacts the bilayer, possibly along with an extension of domain 3. These results reveal a two-stage mechanism for pore formation by the cholesterol-binding toxins.  相似文献   

18.
Many toxins and antimicrobial peptides permeabilize membrane vesicles by forming multimeric pores. Determination of the size of such pores is an important first step for understanding their structure and the mechanism of their self-assembly. We report a simple method for sizing pores in vesicles based on the differential release of co-encapsulated fluorescently labeled dextran markers of two different sizes. The method was tested using the bee venom peptide melittin, which was found to form pores of 25-30 A diameter in palmitoyloleoylphosphatidylcholine (POPC) vesicles at a lipid-to-peptide ratio of 50. This result is consistent with observations on melittin pore formation in erythrocytes (Katsu, T., C. Ninomiya, M. Kuroko, H. Kobayashi, T. Hirota, and Y. Fujita 1988. Action mechanism of amphipathic peptides gramicidin S and melittin on erythrocyte membrane Biochim. Biophys. Acta. 939:57-63).  相似文献   

19.
The peptide GALA undergoes a conformational change to an amphipathic alpha -helix when the pH is reduced, inducing leakage of contents from vesicles. Leakage from neutral or negativelycharged vesicles at pH 5.0 was similar and could be adequately explained by a mathematical model which assumed that GALA becomes incorporated into the vesicle bilayer and irreversibly aggregates to form a pore consisting of M =10+/-2 peptides. Increasing cholesterol content in the membranes resulted in reduced leakage, and increased reversibility of surface aggregation of the peptide. Employing fluorescently labelled peptides confirmed that the degree of reversibility of surface aggregation of GALA was significantly larger in cholesterol containing liposomes. Orientation of the peptide GALA in bilayers was determined by a bodipy-avidin/ biotin binding assay. The peptide was labelled by biotin at the N- or Cterminus and bodipy-avidin molecules were added externally or were preencapsulated in the vesicles. The peptides are arranged in the pore perpendicularly to the membrane, such that 3/4 of the N-termini are on the internal side of the membrane. The pores are stable and persist for at least 10 min. When the peptides form an aggregate of size smaller than M, the orientation of the peptide is mostly parallel to the surface and the biotinylated peptide does not translocate. When a critical size of the aggregate is attained, a rearrangement of the peptide occurs, which amounts to rapid penetration and formation of a pore structure. Induction of fusion by peptides may be antagonistic to pore formation, the outcome being dependent on vesicle aggregation.  相似文献   

20.
Chen FY  Lee MT  Huang HW 《Biophysical journal》2003,84(6):3751-3758
Antimicrobial peptides have two binding states in a lipid bilayer, a surface state S and a pore-forming state I. The transition from the S state to the I state has a sigmoidal peptide-concentration dependence indicating cooperativity in the peptide-membrane interactions. In a previous paper, we reported the transition of alamethicin measured in three bilayer conditions. The data were explained by a free energy that took into account the membrane thinning effect induced by the peptides. In this paper, the full implications of the free energy were tested by including another type of peptide, melittin, that forms toroidal pores, instead of barrel-stave pores as in the case of alamethicin. The S-to-I transitions were measured by oriented circular dichroism. The membrane thinning effect was measured by x-ray diffraction. All data were in good agreement with the theory, indicating that the membrane thinning effect is a plausible mechanism for the peptide-induced pore formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号