首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reprogramming of human somatic cells to induced pluripotent stem (hiPS) cells enables the possibility of generating patient-specific autologous cells for regenerative medicine. A number of human somatic cell types have been reported to generate hiPS cells, including fibroblasts, keratinocytes and peripheral blood cells, with variable reprogramming efficiencies and kinetics. Here, we show that human astrocytes can also be reprogrammed into hiPS (ASThiPS) cells, with similar efficiencies to keratinocytes, which are currently reported to have one of the highest somatic reprogramming efficiencies. ASThiPS lines were indistinguishable from human embryonic stem (ES) cells based on the expression of pluripotent markers and the ability to differentiate into the three embryonic germ layers in vitro by embryoid body generation and in vivo by teratoma formation after injection into immunodeficient mice. Our data demonstrates that a human differentiated neural cell type can be reprogrammed to pluripotency and is consistent with the universality of the somatic reprogramming procedure.  相似文献   

2.
3.
The majority of studies on stem cell differentiation have so far been based in vivo, on live animal models. The usefulness of such models is limited, since it is much more technically challenging to conduct molecular studies and genetic manipulation on live animal models compared to in vitro cell culture. Hence, it is imperative that efficient protocols for directing stem cell differentiation into well-defined lineages in vitro are developed. The development of such protocols would also be useful for clinical therapy, since it is likely that the transplantation of differentiated stem cells would result in higher engraftment efficiency and enhanced clinical efficacy, compared to the transplantation of undifferentiated stem cells. The in vitro differentiation of stem cells, prior to transplantation in vivo, would also avoid spontaneous differentiation into undesired lineages at the transplantation site, as well as reduce the risk of teratoma formation, in the case of embryonic stem cells. Hence, this review critically examines the various strategies that could be employed to direct and control stem cell differentiation in vitro.  相似文献   

4.
Human induced pluripotent stem (hiPS) cells have great potential for regenerative medicine and drug discovery. It is essential to establish highly efficient and reliable methods for hiPS cell cryopreservation. We examined cryopreservation of hiPS cells by the vitrification method using a dimethyl sulfoxide Me2SO-free and serum-free medium, VS2E, that uses Euro-Collins solution as a base with 40% (v/v) ethylene glycol and 10% (w/v) polyethylene glycol as cryoprotectants. This combination of vitrification and cryoprotectants resulted in a higher recovery rate of hiPS cells than with a commercially-available vitrification solution, DAP213, which contained Me2SO and serum components. After vitrification and warming, hiPS cells were cultured easily. Even after several subculturing steps, cells expressed undifferentiated cell markers, such as Oct-3/4 and SSEA-4, and also exhibited alkaline phosphatase activity. The pluripotency of hiPS cells was maintained, as demonstrated by teratoma formation upon hiPS cell transplantation into severe combined immunodeficient mice. Thus, we successfully preserved hiPS cells under liquid nitrogen with high efficiency using Me2SO-free vitrification solution and rapid cooling.  相似文献   

5.
Human embryonic stem (hES) cells have a potential use for the repair and regeneration of injured tissues. However, teratoma formation can be a major obstacle for hES-mediated cell therapy. Therefore, tracking the fate and function of transplanted hES cells with noninvasive imaging could be valuable for a better understanding of the biology and physiology of teratoma formation. In this study, hES cells were stably transduced with a double fusion reporter gene consisting of firefly luciferase and enhanced green fluorescent protein. Following bioluminescence imaging and histology, we demonstrated that engraftment of hES cells was followed by dramatically increasing signaling and led to teratoma formation confirmed by histology. Studies of the angiogenic processes within teratomas revealed that their vasculatures were derived from both differentiated hES cells and host. Moreover, FACS analysis showed that teratoma cells derived from hES cells expressed high levels of CD56 and SSEA-4, and the subcultured SSEA-4(+) cells showed a similar cell surface marker expression pattern when compared to undifferentiated hES cells. We report here for the first time that SSEA-4(+) cells derived from teratoma exhibited multipotency, retained their differentiation ability in vivo as confirmed by their differentiation into representative three germ layers.  相似文献   

6.
We establish a novel method for the induction and collection of mesenchymal stem cells using a typical cell surface marker, CD105, through adipogenesis from mouse ES cells. ES cells were cultured in a medium for adipogenesis. Mesenchymal stem cells from mouse ES cells were easily identified by the expression of CD105, and were isolated and differentiated into multiple mesenchymal cell types. Mesenchymal stem cells showed remarkable telomerase activity and sustained their growth for a long time with a high potential for differentiation involving skeletal myogenesis in vitro. When mesenchymal stem cells were transplanted into the injured tibialis anterior muscles, they differentiated into skeletal muscle cells in vivo. In addition, they improved the vascular formation, but never formed teratoma for longer than 6 months. Gene expression profiles revealed that mesenchymal stem cells lost pluripotency, while they acquired high potential to differentiate into mesenchymal cell lines. They thus indicate a promising new source of cell-based therapy without teratoma formation.  相似文献   

7.
Regenerative endodontics aims to preserve, repair or regenerate the dental pulp tissue. Dental pulp stem cells, have a potential use in dental tissue generation. However, specific requirements to drive the dental tissue generation are still obscured. We established an in vivo model for studying the survival of dental pulp cells (DPC) and their potential to generate dental pulp tissue. DPC were mixed with collagen scaffold with or without slow release bone morphogenic protein 4 (BMP-4) and fibroblast growth factor 2 (FGF2). The cell suspension was transplanted into a vascularized tissue engineering chamber in the rat groin. Tissue constructs were harvested after 2, 4, 6, and 8 weeks and processed for histomorphological and immunohistochemical analysis. After 2 weeks newly formed tissue with new blood vessel formation were observed inside the chamber. DPC were found around dentin, particularly around the vascular pedicle and also close to the gelatin microspheres. Cell survival, was confirmed up to 8 weeks after transplantation. Dentin Sialophosphoprotein (DSPP) positive matrix production was detected in the chamber, indicating functionality of dental pulp progenitor cells. This study demonstrates the potential of our tissue engineering model to study rat dental pulp cells and their behavior in dental pulp regeneration, for future development of an alternative treatment using these techniques.  相似文献   

8.
Xenografting is widely used for assessing in vivo pluripotency of human stem cell populations. Here, we report on early to late events in the development of mature experimental teratoma from a well-characterized human embryonic stem cell (HESC) line, HS181. The results show an embryonic process, increasingly chaotic. Active proliferation of the stem cell derived cellular progeny was detected already at day 5, and characterized by the appearance of multiple sites of engraftment, with structures of single or pseudostratified columnar epithelium surrounding small cavities. The striking histological resemblance to developing embryonic ectoderm, and the formation of epiblast-like structures was supported by the expression of the markers OCT4, NANOG, SSEA-4 and KLF4, but a lack of REX1. The early neural marker NESTIN was uniformly expressed, while markers linked to gastrulation, such as BMP-4, NODAL or BRACHYURY were not detected. Thus, observations on day 5 indicated differentiation comparable to the most early transient cell populations in human post implantation development. Confirming and expanding on previous findings from HS181 xenografts, these early events were followed by an increasingly chaotic development, incorporated in the formation of a benign teratoma with complex embryonic components. In the mature HS181 teratomas not all types of organs/tissues were detected, indicating a restricted differentiation, and a lack of adequate spatial developmental cues during the further teratoma formation. Uniquely, a kinetic alignment of rare complex structures was made to human embryos at diagnosed gestation stages, showing minor kinetic deviations between HS181 teratoma and the human counterpart.  相似文献   

9.
Nerve tissue presents inherent difficulties for its effective regeneration. Stem cell transplantation is considered an auspicious treatment for neuronal injuries. Recently, human dental mesenchymal stem cells (DMSCs) have received extensive attention in the field of regenerative medicine due to their accessibility and multipotency. Since their origin is within the neural crest, they can be differentiated into neural crest-derived cells including neuron and glia cells both in vitro and in vivo. DMSCs are also able to secrete a wide variety of neurotrophins and chemokines, which promote neuronal cells to survival and differentiation. Experimental evidence has shown that human DMSCs engraftment recovered neuronal tissue damage in animal models of central nervous system injuries. Human DMSCs can be a new hope for treatment of nervous system diseases and deficits such as spinal cord injury, stroke and Parkinson’s disease.  相似文献   

10.
Teratoma tumor formation is an essential criterion in determining the pluripotency of human pluripotent stem cells. However, currently there is no consistent protocol for assessment of teratoma forming ability. Here we present detailed characterization of a teratoma assay that is based on subcutaneous co-transplantation of defined numbers of undifferentiated human embryonic stem cells (hESCs) with mitotically inactivated feeder cells and Matrigel into immunodeficient mice. The assay was highly reproducible and 100% efficient when 100,000 hESCs were transplanted. It was sensitive, promoting teratoma formation after transplantation of 100 hESCs, though larger numbers of animals and longer follow-up were required. The assay could detect residual teratoma forming cells within differentiated hESC populations however its sensitivity was decreased in the presence of differentiated cells. Our data lay the foundation, for standardization of a teratoma assay for pluripotency analysis. The assay can also be used for bio-safety analysis of pluripotent stem cell-derived differentiated progeny.  相似文献   

11.
Human pluripotent stem cells (PSCs) have been utilized as a promising source in regenerative medicine. However, the risk of teratoma formation that comes with residual undifferentiated PSCs in differentiated cell populations is most concerning in the clinical use of PSC derivatives. Here, we report that a monoclonal antibody (mAb) targeting PSCs could distinguish undifferentiated PSCs, with potential teratoma-forming activity, from differentiated PSC progeny. A panel of hybridomas generated from mouse immunization with H9 human embryonic stem cells (hESCs) was screened for ESC-specific binding using flow cytometry. A novel mAb, K312, was selected considering its high stem cell-binding activity, and this mAb could bind to several human induced pluripotent stem cells and PSC lines. Cell-binding activity of K312 was markedly decreased as hESCs were differentiated into embryoid bodies or by retinoic acid treatment. In addition, a cell population negatively isolated from undifferentiated or differentiated H9 hESCs via K312 targeting showed a significantly reduced expression of pluripotency markers, including Oct4 and Nanog. Furthermore, K312-based depletion of pluripotent cells from differentiated PSC progeny completely prevented teratoma formation. Therefore, our findings suggest that K312 is utilizable in improving stem cell transplantation safety by specifically distinguishing residual undifferentiated PSCs.  相似文献   

12.
13.
Embryonic and adult fibroblasts can be returned to pluripotency by the expression of reprogramming genes. Multiple lines of evidence suggest that these human induced pluripotent stem (hiPS) cells and human embryonic stem (hES) cells are behaviorally, karyotypically, and morphologically similar. Here we sought to determine whether the physical properties of hiPS cells, including their micromechanical properties, are different from those of hES cells. To this end, we use the method of particle tracking microrheology to compare the viscoelastic properties of the cytoplasm of hES cells, hiPS cells, and the terminally differentiated parental human fibroblasts from which our hiPS cells are derived. Our results indicate that although the cytoplasm of parental fibroblasts is both viscous and elastic, the cytoplasm of hiPS cells does not exhibit any measurable elasticity and is purely viscous over a wide range of timescales. The viscous phenotype of hiPS cells is recapitulated in parental cells with disassembled actin filament network. The cytoplasm of hES cells is predominantly viscous but contains subcellular regions that are also elastic. This study supports the hypothesis that intracellular elasticity correlates with the degree of cellular differentiation and reveals significant differences in the mechanical properties of hiPS cells and hES cells. Because mechanical stimuli have been shown to mediate the precise fate of differentiating stem cells, our results support the concept that stem cell “softness” is a key feature of force-mediated differentiation of stem cells and suggest there may be subtle functional differences between force-mediated differentiation of hiPS cells and hES cells.  相似文献   

14.
We investigated the role of stem cells from human umbilical cord tissue in cardiomyocyte regeneration. The umbilical cord stem cells were initially characterized and differentiated in a myocardial differentiation medium containing 5‐azacytidine for 24 h. Differentiation into cardiomyocytes was determined by expression of cardiac specific markers, like cardiac α‐actin, connexin43, myosin, Troponin T, and ultrastructural analysis. In vivo, the transplanted umbilical cord stem cells were sprouting from local injection and differentiated into cardiomyocyte‐like cells in a rat myocardial infarction model. Echocardiography revealed increasing left ventricular function after umbilical cord stem cell transplantation. These results demonstrate that umbilical cord stem cells can differentiate into cardiomyocyte‐like cells both in vitro and in vivo. Therefore, human umbilical cord might represent a source of stem cells useful for cellular therapy and myocardial tissue engineering. Future studies are required to determine the molecular signaling mechanisms responsible for this phenomenon. J. Cell. Biochem. 107: 926–932, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Embryonic stem cells (ESCs) are an attractive source for tissue regeneration and repair therapies because they can be differentiated into virtually any cell type in the adult body. However, for this approach to succeed, the transplanted ESCs must survive long enough to generate a therapeutic benefit. A major obstacle facing the engraftment of ESCs is transplant rejection by the immune system. Here we show that blocking leukocyte costimulatory molecules permits ESC engraftment. We demonstrate the success of this immunosuppressive therapy for mouse ESCs, human ESCs, mouse induced pluripotent stem cells (iPSCs), human induced pluripotent stem cells, and more differentiated ESC/(iPSCs) derivatives. Additionally, we provide evidence describing the mechanism by which inhibition of costimulatory molecules suppresses T cell activation. This report describes a short-term immunosuppressive approach capable of inducing engraftment of transplanted ESCs and iPSCs, providing a significant improvement in our mechanistic understanding of the critical role costimulatory molecules play in leukocyte activation.  相似文献   

16.
17.
HoxB4 has been shown to enhance hematopoietic engraftment by hematopoietic stem cells (HSC) from differentiating mouse embryonic stem cell (mESC) cultures. Here we examined the effect of ectopic expression of HoxB4 in differentiated human embryonic stem cells (hESCs). Stable HoxB4-expressing hESCs were established by lentiviral transduction, and the forced expression of HoxB4 did not affect stem cell features. HoxB4-expressing hESC-derived CD34+ cells generated higher numbers of erythroid and blast-like colonies than controls. The number of CD34+ cells increased but CD45+ and KDR+ cell numbers were not significantly affected. When the hESC derived CD34+ cells were transplanted into NOD/SCID beta 2m-/- mice, the ectopic expression of HoxB4 did not alter their repopulating capacity. Our findings show that overexpression of HoxB4 in differentiating hESCs increases hematopoietic colony formation and hematopoietic cell formation in vitro, but does not affect in vivo repopulation in adult mice hosts.  相似文献   

18.
Embryonic stem cell (ESC) derivatives offer promise for generating clinically useful tissues for transplantation, yet the specter of producing tumors in patients remains a significant concern. We have developed a simple method that eliminates the tumorigenic potential from differentiated ESC cultures of murine and human origin while purifying lineage-restricted, definitive endoderm-committed cells. A three-stage scheme utilizing magnetic bead sorting and specific antibodies to remove undifferentiated ESCs and extraembryonic endoderm cells, followed by positive selection of definitive endoderm cells on the basis of epithelial cell adhesion molecule (EpCAM) expression, was used to isolate a population of EpCAM(+)SSEA1(-)SSEA3(-) cells. Sorted cells do not form teratomas after transplantation into immunodeficient mice, but display gene and protein expression profiles indicative of definitive endoderm cells. Sorted cells could be subsequently expanded in vitro and further differentiated to express key pancreas specification proteins. In vivo transplantation of sorted cells resulted in small, benign tissues that uniformly express PDX1. These studies describe a straightforward method without genetic manipulation that eliminates the risk of teratoma formation from ESC differentiated derivatives. Significantly, enriched populations isolated by this method appear to be lineage-restricted definitive endoderm cells with limited proliferation capacity.  相似文献   

19.
The use of foetal liver cells (FLC) in the context of hepatic tissue engineering might permit efficient in vitro expansion and cryopreservation in a cell bank. A prerequisite for successful application of bioartificial liver tissue is sufficient initial vascularization. In this study, we evaluated the transplantation of fibrin gel-immobilized FLC in a vascularized arterio-veno-venous (AV)-loop model. FLC were isolated from embryonic/foetal (ED 16) rat livers and were enriched by using magnetic cell sorting (MACS). After cryopreservation, FLC were labelled by pkh-26. Cells were transplanted in a fibrin matrix into a subcutaneous chamber containing a microsurgically created AV-loop in the femoral region of the recipient rat. The chambers were explanted after 14 days. Subcutaneous implants without an AV-loop and cell-free implants served as controls. Fluorescence microscopy of the constructs was used to identify pkh-26+- donor cells. Characterization was performed by RT-PCR and immunhistology (IH) for CK-18 and CD31. Transplantation of FLC using the AV-loop permitted a neo -tissue formation in the fibrin matrix. A high-density vascularization was observed in the AV-loop constructs as shown by CD31 IH. Viable foetal donor cells were detected which expressed CK-18. FLC can be successfully used for heterotopic transplantation. Fibrin matrix permits rapid blood vessel ingrowth from the AV-loop and supports engraftment of FLC. It is therefore an appropriate environment for hepatocyte transplantation in combination with microsurgical vascularization strategies. Transplantation of fibrin gel-immobilized FLC may be a promising approach for the development of highly vascularized in vivo tissue-engineering-based liver support systems.  相似文献   

20.

Background

Dopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress.

Methods

hiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons.

Results

Approximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved.

Conclusion

hiPS cells were successfully differentiated into dopamine neurons in agarose microbeads.

General significance

Agarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号