首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
2.
Uncoupling protein 1 (Ucp1) is the key component of β-adrenergically controlled nonshivering thermogenesis in brown adipocytes. This process combusts stored and nutrient energy as heat. Cold exposure not only activates Ucp1-mediated thermogenesis to maintain normothermia but also results in adaptive thermogenesis, i.e., the recruitment of thermogenic capacity in brown adipose tissue. As a hallmark of adaptive thermogenesis, Ucp1 synthesis is increased proportionally to temperature and duration of exposure. Beyond this classical thermoregulatory function, it has been suggested that Ucp1-mediated thermogenesis can also be employed for metabolic thermogenesis to prevent the development of obesity. Accordingly, in times of excess caloric intake, one may expect a positive regulation of Ucp1. The general impression from an overview of the present literature is, indeed, an increased brown adipose tissue Ucp1 mRNA and protein content after feeding a high-fat diet (HFD) to mice and rats. The reported increases are very variable in magnitude, and the effect size seems to be independent of dietary fat content and duration of the feeding trial. In white adipose tissue depots Ucp1 mRNA is generally downregulated by HFD, indicating a decline in the number of interspersed brown adipocytes.  相似文献   

3.
Adipose organ is made of white (WAT) and brown (BAT) adipose tissue which are primarily responsible for lipid storage and energy production (heat and ATP) respectively. Metabolic activation of WAT may ascribe to this tissue characteristics of BAT, namely non-shivering thermogenesis and ATP production. Recent data indicate that apolipoproteins E (APOE) and A1 (APOA1) regulate WAT mitochondrial metabolic activation. Here, we investigated the functional cross-talk between natural human APOE2 and APOE4 isoforms with APOA1 in this process, using Apoe2knock-in and Apoe4knock-in mice. At baseline when Apoe2knock-in and Apoe4knock-in mice express both APOE and Apoa1, the Apoe2knock-in strain appears to have higher mitochondrial oxidative phosphorylation levels and non-shivering thermogenesis in WAT compared to Apoe4knock-in mice. When mice were switched to a high-fat diet for 18 weeks, circulating levels of endogenous Apoa1 in Apoe2knock-in mice became barely detectable though significant levels of APOE2 were still present. This change was accompanied by a significant reduction in WAT mitochondrial Ucp1 expression while BAT Ucp1 was unaffected. Ectopic APOA1 expression in Apoe2knock-in animals potently stimulated WAT but not BAT mitochondrial Ucp1 expression providing further evidence that APOA1 potently stimulates WAT non-shivering thermogenesis in the presence of APOE2. Ectopic expression of APOA1 in Apoe4knock-in mice stimulated BAT but no WAT mitochondrial Ucp1 levels, suggesting that in the presence of APOE4, APOA1 is a trigger of BAT non-shivering thermogenesis. Overall, our data identified a tissue-specific role of the natural human APOE2 and APOE4 isoforms in WAT- and BAT-metabolic activation respectively, that appears dependent on circulating APOA1 levels.  相似文献   

4.
CRISPR/Cas9 has enabled inducible gene knockout in numerous tissues; however, its use has not been reported in brown adipose tissue (BAT). Here, we developed the brown adipocyte CRISPR (BAd-CRISPR) methodology to rapidly interrogate the function of one or multiple genes. With BAd-CRISPR, an adeno-associated virus (AAV8) expressing a single guide RNA (sgRNA) is administered directly to BAT of mice expressing Cas9 in brown adipocytes. We show that the local administration of AAV8-sgRNA to interscapular BAT of adult mice robustly transduced brown adipocytes and ablated expression of adiponectin, adipose triglyceride lipase, fatty acid synthase, perilipin 1, or stearoyl-CoA desaturase 1 by >90%. Administration of multiple AAV8 sgRNAs led to simultaneous knockout of up to three genes. BAd-CRISPR induced frameshift mutations and suppressed target gene mRNA expression but did not lead to substantial accumulation of off-target mutations in BAT. We used BAd-CRISPR to create an inducible uncoupling protein 1 (Ucp1) knockout mouse to assess the effects of UCP1 loss on adaptive thermogenesis in adult mice. Inducible Ucp1 knockout did not alter core body temperature; however, BAd-CRISPR Ucp1 mice had elevated circulating concentrations of fibroblast growth factor 21 and changes in BAT gene expression consistent with heat production through increased peroxisomal lipid oxidation. Other molecular adaptations predict additional cellular inefficiencies with an increase in both protein synthesis and turnover, and mitochondria with reduced reliance on mitochondrial-encoded gene expression and increased expression of nuclear-encoded mitochondrial genes. These data suggest that BAd-CRISPR is an efficient tool to speed discoveries in adipose tissue biology.  相似文献   

5.
While fatty acids (FAs) released by white adipose tissue (WAT) provide energy for other organs, lipolysis is also critical in brown adipose tissue (BAT), generating FAs for oxidation and UCP-1 activation for thermogenesis. Here we show that adipose-specific ablation of desnutrin/ATGL in mice converts BAT to a WAT-like tissue. These mice exhibit severely impaired thermogenesis with increased expression of WAT-enriched genes but decreased BAT genes, including UCP-1 with lower PPARα binding to its promoter, revealing the requirement of desnutrin-catalyzed lipolysis for maintaining a BAT phenotype. We also show that desnutrin is phosphorylated by AMPK at S406, increasing TAG hydrolase activity, and provide evidence for increased lipolysis by AMPK phosphorylation of desnutrin in adipocytes and in?vivo. Despite adiposity and impaired BAT function, desnutrin-ASKO mice have improved hepatic insulin sensitivity with lower DAG levels. Overall, desnutrin is phosphorylated/activated by AMPK to increase lipolysis and brings FA oxidation and UCP-1 induction for thermogenesis.  相似文献   

6.
Beta3-adrenergic receptors (AR) are nearly exclusively expressed in brown and white adipose tissues, and chronic activation of these receptors by selective agonists has profound anti-diabetes and anti-obesity effects. This study examined metabolic responses to acute and chronic beta3-AR activation in wild-type C57Bl/6 mice and congenic mice lacking functional uncoupling protein (UCP)1, the molecular effector of brown adipose tissue (BAT) thermogenesis. Acute activation of beta3-AR doubled metabolic rate in wild-type mice and sharply elevated body temperature and BAT blood flow, as determined by laser Doppler flowmetry. In contrast, beta3-AR activation did not increase BAT blood flow in mice lacking UCP1 (UCP1 KO). Nonetheless, beta3-AR activation significantly increased metabolic rate and body temperature in UCP1 KO mice, demonstrating the presence of UCP1-independent thermogenesis. Daily treatment with the beta3-AR agonist CL-316243 (CL) for 6 days increased basal and CL-induced thermogenesis compared with naive mice. This expansion of basal and CL-induced metabolic rate did not require UCP1 expression. Chronic CL treatment of UCP1 KO mice increased basal and CL-stimulated metabolic rate of epididymal white adipose tissue (EWAT) fourfold but did not alter BAT thermogenesis. After chronic CL treatment, CL-stimulated thermogenesis of EWAT equaled that of interscapular BAT per tissue mass. The elevation of EWAT metabolism was accompanied by mitochondrial biogenesis and the induction of genes involved in lipid oxidation. These observations indicate that chronic beta3-AR activation induces metabolic adaptation in WAT that contributes to beta3-AR-mediated thermogenesis. This adaptation involves lipid oxidation in situ and does not require UCP1 expression.  相似文献   

7.
Mitochondrial uncoupling protein 1 (UCP1) is usually expressed only in brown adipose tissue (BAT) and a key molecule for metabolic thermogenesis to avoid an excess of fat accumulation. However, there is little BAT in adult humans. Therefore, UCP1 expression in tissues other than BAT is expected to reduce abdominal fat. Here, we show reduction of abdominal white adipose tissue (WAT) weights in rats and mice by feeding lipids from edible seaweed, Undaria pinnatifida. Clear signals of UCP1 protein and mRNA were detected in WAT of mice fed the Undaria lipids, although there is little expression of UCP1 in WAT of mice fed control diet. The Undaria lipids mainly consisted of glycolipids and seaweed carotenoid, fucoxanthin. In the fucoxanthin-fed mice, WAT weight significantly decreased and UCP1 was clearly expressed in the WAT, while there was no difference in WAT weight and little expression of UCP1 in the glycolipids-fed mice. This result indicates that fucoxanthin upregulates the expression of UCP1 in WAT, which may contribute to reducing WAT weight.  相似文献   

8.
9.
Nonshivering thermogenesis induced in brown adipose tissue (BAT) during high-fat feeding is mediated through uncoupling protein 1 (UCP1). UCP2 is a recently identified homologue found in many tissues. To determine the role of UCP1 and UCP2 in thermoregulation and energy balance, we investigated the long-term effect of high-fat feeding on mRNA levels in mice at two different ambient temperatures. We also treated mice with the anorectic peptide enterostatin and compared mRNA levels in BAT, white adipose tissue (WAT), stomach, and duodenum. Here, we report that high-fat feeding at 23 degrees C increased UCP1 and UCP2 levels in BAT four- and threefold, respectively, and increased UCP2 levels fourfold in WAT. However, at 29 degrees C, UCP1 decreased, whereas UCP2 remained unchanged in BAT and increased twofold in WAT. Enterostatin increased UCP1 and decreased UCP2 mRNA in BAT. In stomach and duodenum, high-fat feeding decreased UCP2 mRNA, whereas enterostatin increased it. Our results suggest that the regulation of uncoupling protein mRNA levels by high-fat feeding is dependent on ambient temperature and that enterostatin is able to modulate it.  相似文献   

10.
Exposure of humans and rodents to cold activates thermogenic activity in brown adipose tissue (BAT). This protocol describes a mouse model to study the activation of BAT and angiogenesis in adipose tissues by cold acclimation. After a 1-week exposure to 4 °C, adult C57BL/6 mice show an obvious transition from subcutaneous white adipose tissue (WAT) into brown-like adipose tissue (BRITE). The BRITE phenotype persists after continuous cold exposure, and by the end of week 5 BRITE contains a high number of uncoupling protein-1-positive mitochondria, a characteristic feature of BAT. During the transition from WAT into BRITE, the vascular density is markedly increased owing to the activation of angiogenesis. In BAT, cold exposure stimulates thermogenesis by increasing the mitochondrial content and metabolic rate. BAT and the increased metabolic rate result in a lean phenotype. This protocol provides an outstanding opportunity to study the molecular mechanisms that control adipose mass.  相似文献   

11.
Cyclic guanosine monophosphate (cGMP)-dependent protein kinase I (PKG-I) is a multifunctional protein. The direct effects of PKG-I activation on energy homeostasis and obesity development are not well understood. Herein, we generated transgenic mice with expression of the constitutively active PKG-I in adipose tissue as well as in other tissues. Male and female PKG-I overexpressing mice were fed a low-fat (LF) or high-fat (HF) diet for 16 weeks. HF-fed female PKG-I transgenic mice had decreased body weight gain, lower percentage of body fat, and improved glucose tolerance compared to HF-fed wild-type (WT) controls. In contrast, male transgenic PKG-I mice were not resistant to the development of HF-diet-induced obesity, and exhibited similar levels of adiposity and glucose intolerance as HF-fed WT controls. Furthermore, we found that HF-fed female transgenic PKG-I mice had increased energy expenditure and cold-induced adaptive thermogenesis compared to HF-fed WT controls, which was associated with increased expression of uncoupling protein-1 (UCP1) in brown adipose tissue (BAT). In addition, the rates of lipolysis in white adipose tissue (WAT) were also increased in female transgenic PKG-I mice compared to WT controls due to increased phosphorylation of hormone-sensitive lipase (HSL). However, in male mice, adaptive thermogenesis or WAT lipolysis was similar between transgenic PKG-I mice and WT controls. Together, these data demonstrate sex differences in effects of PKG-I activation on the regulation of adipose tissue function and its contribution to diet induced obesity.  相似文献   

12.
White (WAT) and brown (BAT) adipose tissue, the two main types of adipose organ, are responsible for lipid storage and non-shivering thermogenesis, respectively. Thermogenesis is a process mediated by mitochondrial uncoupling protein 1 (UCP1) which uncouples oxidative phosphorylation from ATP production, leading to the conversion of free fatty acids to heat. This process can be triggered by exposure to low ambient temperatures, caloric excess, and the immune system. Recently mitochondrial thermogenesis has also been associated with plasma lipoprotein transport system. Specifically, apolipoprotein (APO) E3 is shown to have a bimodal effect on WAT thermogenesis that is highly dependent on its site of expression. Similarly, APOE2 and APOE4 differentially affect BAT and WAT mitochondrial metabolic activity in processes highly modulated by APOA1. Furthermore, the absence of classical APOA1 containing HDL (APOA1-HDL), is associated with no measurable non-shivering thermogenesis in WAT of mice fed high fat diet. Based on these previous observations which indicate important regulatory roles for both APOA1 and APOE in adipose tissue mitochondrial metabolic activity, here we sought to investigate the potential roles of these apolipoproteins in BAT and WAT metabolic activation in mice, following stimulation by cold exposure (7 °C). Our data indicate that APOA1-HDL promotes metabolic activation of BAT only in the presence of very low levels (virtually undetectable) of APOE3-containing HDL (APOE3-HDL), which acts as an inhibitor in this process. In contrast, induction of WAT thermogenesis is subjected to a more complicated regulation which requires the combined presence of both APOA1-HDL and APOE3-HDL.  相似文献   

13.
Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue(WAT) or brown adipose tissue(BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brownlike adipocytes were discovered in WAT. These brownlike adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expressionpattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation(adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.  相似文献   

14.
15.
Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue (WAT) or brown adipose tissue (BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brown-like adipocytes were discovered in WAT. These brown-like adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expression pattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation (adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.  相似文献   

16.
17.
Brown adipose tissue (BAT) plays a key role in energy expenditure through its specialized thermogenic function. Therefore, BAT activation may help prevent and/or treat obesity. Interestingly, subcutaneous white adipose tissue (WAT) also has the ability to differentiate into brown-like adipocytes and may potentially contribute to increased thermogenesis. We have previously reported that eicosapentaenoic acid (EPA) reduces high-fat (HF)-diet-induced obesity and insulin resistance in mice. Whether BAT mediates some of these beneficial effects of EPA has not been determined. We hypothesized that EPA activates BAT thermogenic program, contributing to its antiobesity effects. BAT and WAT were harvested from B6 male mice fed HF diets supplemented with or without EPA. HIB 1B clonal brown adipocytes treated with or without EPA were also used. Gene and protein expressions were measured in adipose tissues and H1B 1B cells by quantitative polymerase chain reaction and immunoblotting, respectively. Our results show that BAT from EPA-supplemented mice expressed significantly higher levels of thermogenic genes such as PRDM16 and PGC1α and higher levels of uncoupling protein 1 compared to HF-fed mice. By contrast, both WATs (subcutaneous and visceral) had undetectable levels of these markers with no up regulation by EPA. HIB 1B cells treated with EPA showed significantly higher mRNA expression of PGC1α and SIRT2. EPA treatment significantly increased maximum oxidative and peak glycolytic metabolism in H1B 1B cells. Our results demonstrate a novel and promising role for EPA in preventing obesity via activation of BAT, adding to its known beneficial anti-inflammatory effects.  相似文献   

18.
The obesity epidemic has intensified efforts to understand the mechanisms controlling adipose tissue development. Adipose tissue is generally classified as white adipose tissue (WAT), the major energy storing tissue, or brown adipose tissue (BAT), which mediates non-shivering thermogenesis. It is hypothesized that brite adipocytes (brown in white) may represent a third adipocyte class. The recent realization that brown fat exist in adult humans suggests increasing brown fat energy expenditure could be a therapeutic strategy to combat obesity. To understand adipose tissue development, several groups are tracing the origins of mature adipocytes back to their adult precursor and embryonic ancestors. From these studies emerged a model that brown adipocytes originate from a precursor shared with skeletal muscle that expresses Myf5-Cre, while all white adipocytes originate from a Myf5-negative precursors. While this provided a rational explanation to why BAT is more metabolically favorable than WAT, recent work indicates the situation is more complex because subsets of white adipocytes also arise from Myf5-Cre expressing precursors. Lineage tracing studies further suggest that the vasculature may provide a niche supporting both brown and white adipocyte progenitors; however, the identity of the adipocyte progenitor cell is under debate. Differences in origin between adipocytes could explain metabolic heterogeneity between depots and/or influence body fat patterning particularly in lipodystrophy disorders. Here, we discuss recent insights into adipose tissue origins highlighting lineage-tracing studies in mice, how variations in metabolism or signaling between lineages could affect body fat distribution, and the questions that remain unresolved. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

19.
20.
Lipogenesis was measured in 2 and 5 week gold-thioglucose (GTG) obese mice after a single meal of 0.5 g of standard chow. Compared to control mice the rate of lipogenesis in GTG obese mice, was 4-fold higher in liver and 10-fold higher in white adipose tissue (WAT). In brown adipose tissue (BAT) of GTG-injected mice the lipogenic rate was only 50% of that of controls. These results indicate that the increased lipid synthesis observed in GTG-injected mice is not due solely to hyperphagia and that some other stimuli, such as increased basal insulin levels and/or decreased thermogenesis and insulin resistance in BAT, contribute to the high rates of fat synthesis in this animal model of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号