首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we report a novel wavelength interrogation-based surface plasmon resonance (SPR) system, in which a film of three Ag layers and three Au layers are alternately deposited on a Kretschmann configuration as sensing element. This multilayer film shows higher sensitivity for refractive index (RI) measurement by comparing with single Au layer structure, which is consistent with its theoretical calculation. A sensitivity range of 2056–5893 nm/RIU can be achieved, which is comparable to RI sensitivities of other wavelength-modulated SPR sensors. Compared with Ag film, this Ag/Au multilayer arrangement offers anti-oxidant protection. This SPR biosensor based on a cost-effective Ag/Au multilayer structure is applicable to the real-time detection of specific interactions and dissociation of low protein concentrations. To extend the application of this highly-sensitive metal film device, we integrated this concept on an optical fiber. The range of RI sensitivities with Ag/Au multilayer was 1847–3309 nm/RIU. This miniaturized Ag/Au multilayer-based fiber optic sensor has a broad application in chemical and biological sensing.  相似文献   

2.
The detection performance of conventional surface plasmon resonance (SPR) biosensors is limited to a 1 pg/mm(2) surface coverage of biomolecules, and consequently, such sensors struggle to detect the interaction of small molecules in low concentrations. The present study is attempted to propose the use of a novel SPR biosensor with Au nanoclusters embedded in a dielectric film to achieve a 10-fold improvement in the resolution performance. A co-sputtering method utilizing a multi-target sputtering system is used to fabricate the present dielectric films (SiO(2)) with embedded Au nanoclusters. It is shown that the sensitivity of the developed SPR biosensor can be improved by adjusting the size and volume fraction of the embedded Au nanoclusters in order to control the surface plasmon effect. The present gas detection and DNA hybridization experimental results confirm that the proposed Au nanocluster-enhanced SPR biosensor provides the potential to achieve an ultrahigh-resolution detection performance of approximately 0.1 pg/mm(2) surface coverage of biomolecules.  相似文献   

3.
In this study, we prepared metallic corrugated structures for use as highly sensitive plasmonic sensors. Relying on the direct nanoimprint-in-metal method, fabrication of this metallic corrugated structure was readily achieved in a single step. The metallic corrugated structures were capable of sensing both surface plasmon resonance (SPR) wavelengths and index-matching effects. The corrugated Au films exhibited high sensitivity (ca. 800 nm/RIU), comparable with or even higher than those of other reported SPR-based sensors. Because of the unique index-matching effect, refractometric sensing could also be performed by measuring the transmission intensity of the Au/substrate SPR mode-conveniently, without a spectrometer. In the last, we demonstrated the corrugated Au film was capable of sensing biomolecules, revealing the ability of the structure to be a highly sensitive biosensor.  相似文献   

4.
We present a new integrated-optic surface plasmon resonance (SPR) biosensor based on electro-optical modulation. The SPR characteristics for the analyte concentration detection can be electro-optically modulated by applying the voltage on the electrodes of the biosensor fabricated on lithium niobate, which is an excellent electro-optic material. Two measurement methods, electro-optically modulated SPR spectral measurement and electro-optically modulated SPR intensity measurement, are demonstrated and their measurands are the SPR wavelength and the output optical intensity, respectively. Human serum albumin is coated on the gold film surface of the proposed biosensor to detect the concentration of beta-blocker, which is a remedy for heart disease. As the applied voltage increases such that the effective index of guided mode rises, the SPR wavelength shifts toward the long wavelength side and the output optical intensity at the wavelength of 632.8 nm diminishes. The linear regression slope of the relation between the measurand and the applied voltage is dependent on the analyte concentration and can be used to determine the concentration variation. Experimental results measured by the electro-optically modulated SPR methods are compared with those measured by the conventional spectral and intensity methods, and the effects of waveguide width on the biosensor performance are discussed.  相似文献   

5.
Sandwich and colloidal Au techniques for enhancing the sensitivity of a wavelength-modulation surface plasmon resonance (SPR) immunosensor are demonstrated by the detection of human complement factor 4 (C4). The design of the wavelength-modulation SPR biosensor is based on fixing the incident angle of light and measuring the reflected intensity of light in the wavelength range spanning 500-900 nm simultaneously. The human C4 had good response in the concentration range 2-20 microg/mL in the direct assay. However, in the sandwich assay, the human C4 had good response in the concentration range 0.2-20 microg/mL and the lowest concentration is 10-fold lower than that obtained by the direct assay. With human C4-Au colloidal conjugate, the human C4 had good response in the concentration range 0.1-20 microg/mL and the lowest concentration is 20-fold lower than that obtained by the direct assay. In the colloidal-Au-enhanced sandwich assay, the human C4 had good response in the concentration range 0.05-5 microg/mL and the lowest concentration is 40-fold lower than that obtained by the direct assay. Under selected experimental conditions, the reproducibility, sensitivity, and reversibility of the enhanced SPR immunoassay are very satisfactory. The results represent potentially significant advantages in the sensitivity of SPR biosensors.  相似文献   

6.
Chen  Xiaojuan  Wen  Rui  Zhang  Lisheng  Lahiri  Abhishek  Wang  Peijie  Fang  Yan 《Plasmonics (Norwell, Mass.)》2014,9(4):945-949

In this paper, we highlight the formation of Ag/Au core-shell nanoparticles at room temperature by using a low-power laser. We have investigated the plasmon-induced reduction of Ag+ ions on bare Au nanoparticles synthesized by laser ablation technique, and citrate-capped Au nanoparticles synthesized by chemical method. It is demonstrated that citrate plays an important role for the reduction of silver ions. The citrate gets oxidized by the ‘hot’ holes produced due to the surface plasmon resonance (SPR) of the Au nanoparticles which then reduces the Ag+ ions to Ag. The importance of excitation laser wavelength is also demonstrated to facilitate the reduction process.

  相似文献   

7.
It is well known that surface plasmon resonance (SPR) can selectively enhance the photoluminescence (PL) from nearby chromophores with a single emission peak at an appropriate distance. Here, we combine white light-emitting CdS quantum dot nanocrystals containing band-edge and surface-state emissions simultaneously with Ag nanoparticles and study the interaction between them. It is found that the surface-state emission is always enhanced while the band-edge emission quenched regardless of the SPR wavelength of Ag nanoparticles. This phenomenon reveals that the SPR of Ag nanoparticles is not enhancing the emission from a wavelength-matched state. We propose that the surface plasmon of Ag nanoparticles is first excited by the energy of the band-edge emission and then the excited energetic electrons transfer to the surface-state of CdS. Through this energy transfer process, the surface-state emission is enhanced and band-edge emission quenched. This investigation can not only deliver understanding of the complicated interaction between metallic nanoparticles and nearby multi-emission-peak contained chromophores, but it also has potential applications in tuning the color temperature of white light-emitting materials.  相似文献   

8.

Noble metal nanoparticles (NPs) have attracted much attention due to their unique physical and chemical properties such as tunable surface plasmonics, high-efficiency electrochemical sensing, and enhanced fluorescence. We produced two biosensor chips consisting of Ag@Au bimetallic nanoparticles (BNPs) on a carbon thin film by simple RF-sputtering and RF-plasma-enhanced chemical vapor co-deposition. We deposited Au NPs with average size of 4 nm (Au1 NPs) or 11 nm (Au2 NPs) on a sensor chip consisting of Ag NPs with mean size of 15 nm, and we investigated the effect of shell size (Au NPs) on the chemical activities of the resulting Ag@Au1 BNPs and Ag@Au2 BNPs. We estimated the average size and morphology of Ag@Au BNPs by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. X-ray diffraction (XRD) patterns revealed that Ag NPs and Au NPs had face-centered cubic (FCC) structure. We studied aging of the biosensor chips consisting of Ag@Au BNPs by localized surface plasmon resonance (LSPR) spectroscopy for up to 3 months. UV–visible aging of the prepared samples indicated that Ag@Au1 BNPs, which corresponded to Ag NPs covered with smaller Au NPs, were more chemically active than Ag@Au2 BNPs. Furthermore, we evaluated changes in the LSPR absorption peaks of Ag@Au1 BNPs and bare Ag NPs in the presence of a DNA primer decamer at fM concentrations, to find that Ag@Au1 BNPs were more sensitive biosensor chips within a short response time as compared to bare Ag NPs.

  相似文献   

9.
One-step immobilization method for peptides and proteins is developed by using modified parylene film with formyl groups which is suitable for microplate-based immunoassay and SPR biosensor application. The immobilization of peptides and proteins is achieved through the covalent bonding of the formyl group with the primary amine groups of peptides and proteins, which no additional activation step is required. In this work, the immobilization efficiency of parylene-H is estimated in comparison with parylene-A and physical adsorption, using biotinylated-cyclic citrullinated peptide (biotinylated-CCP), human chorionic gonadotropin (hCG) and horseradish peroxidase (HRP) as model proteins. The applicability of parylene-H film to SPR biosensor is demonstrated by estimating the detection range and sensitivity of SPR biosensor at various thicknesses. The immobilization efficiency of parylene-H film for SPR biosensor was compared with physical adsorption by using HRP as a model protein.  相似文献   

10.
The catalytic growth of Au nanoparticles (AuNPs) has been employed in several analytical methods for improving the detection sensitivity, or integrated with the enzyme reactions for the quantitative detection of the respective substrates. However, the catalytic growth of Au nanoparticles do not work in some situations, such as surface plasmon resonance (SPR), electrochemistry, where metal matrices were used, because metal matrices used in these techniques, e.g. Au, are susceptible to metal deposition, which increased the background seriously. In this work, a SiO(2) layer was vapor-deposited on the gold film. The inhibition of metal deposition by this SiO(2) layer was investigated by SPR sensor. The results showed that the SiO(2) layer could avoid the deposition of metal on Au film. With the low background achieved by SiO(2)-coated Au films, sensitive detection of DNA hybridization using the catalytic growth of Au nanoparticles enhanced SPR was demonstrated. The work described here maybe helpful for the development of sensitive bioanalytical methods.  相似文献   

11.
Yuk JS  Jung SH  Jung JW  Hong DG  Han JA  Kim YM  Ha KS 《Proteomics》2004,4(11):3468-3476
We have investigated whether surface plasmon resonance (SPR) sensors based on the wavelength interrogation are able to analyze protein interactions on protein arrays. The spectral SPR sensor was self-constructed and its detection limit, expressed as the minimal refractive index variation, was calculated to be 6.6x10(-5) with the signal fluctuation of 1.0x10(-5). The protein array surface was modified by a mixed thiol monolayer to immobilize proteins. Protein arrays were analyzed by the line-scanning mode of the SPR sensor, which scanned every 100 microm along the central line of array spots and the scanned results were presented by color spectra from blue to red. Glutathione S-transferase (GST)-rac1 caused a concentration-dependent increase of SPR wavelength shift on protein arrays. The surface structure of the protein arrays was analyzed by atomic force microscopy. Specific interactions of antigens with antibodies were analyzed on the protein arrays by using three antibodies and eight proteins. These results suggest that the wavelength interrogation-based SPR sensor can be used as the biosensor for the high-throughput analysis of protein interactions on protein arrays.  相似文献   

12.
Current surface plasmon resonance (SPR) modes based on the attenuated total reflection (ATR) method can broadly be categorized as: conventional SPR, long-range SPR (LRSPR), coupled plasmon-waveguide resonance (CPWR), and waveguide-coupled SPR (WCSPR). Although the features of optical biosensors are dependent upon their particular SPR mode, a common requirement for all biosensors utilized for biomolecular interaction analysis (BIA) is a high degree of sensitivity. The current paper presents a theoretical analysis and comparison of the sensitivity and resolution of these four types of SPR biosensors when employed in three of the most prevalent detection methods, namely angular interrogation, wavelength interrogation, and intensity measurement. This study develops a detailed understanding of the influences of various biosensor design parameters in order to enhance the sensitivity and detection limit capabilities of such devices.  相似文献   

13.
Owing to its large surface-to-volume ratio and good biocompatibility, graphene has been identified as a highly promising candidate as the sensing layer for fiber optic sensors. In this paper, a graphene/Au-enhanced plastic clad silica (PCS) fiber optic surface plasmon resonance (SPR) sensor is presented. A sheet of graphene is employed as a sensing layer coated around the Au film on the PCS fiber surface. The PCS fiber is chosen to overcome the shortcomings of the structured microfibers and construct a more stable and reliable device. It is demonstrated that the introduction of graphene can enhance the intensity of the confined electric field surrounding the sensing layer, which results in a stronger light-matter interaction and thereby the improved sensitivity. The sensitivity of graphene-based fiber optic SPR sensor exhibits more than two times larger than that of the conventional gold film SPR fiber optic sensor. Furthermore, the dynamic response analyses reveal that the graphene/Au fiber optic SPR sensor exhibits a fast response (5 s response time) and excellent reusability (3.5% fluctuation) to the protein biomolecules. Such a graphene/Au fiber optic SPR sensor with high sensitivity and fast response shows a great promise for the future biochemical application.  相似文献   

14.
We design two kinds of plasmonic broadband polarization splitters based on dual-core photonic crystal fiber (DC-PCF) with elliptical Au or Ag nanowire in this paper. It is analyzed for the polarization independent characterestics of the designed DC-PCF by the finite element method (FEM). In order to excite the surface plasmon resonance (SPR), the metal Au and Ag are filled into elliptical central air hole. The resonance coupling between the fourth- or fifth-order surface plasmon modes (SPMs) and core-guided modes (CGMs) are founded by this numerical simulation. The device lengths of the designed splitters with Au nanowire are 2937 and 827 μm at the wavelength of 1.31 and 1.55 μm, respectively. As the extinction ratios are better than ?20 dB, its bandwidths are better than 94 and 103 nm. For the designed Ag nanowire splitter, the device lengths are 3066 or 809 μm at 1.31 or 1.55 μm, respectively. The bandwidths with the extinction ratio better than ?20 dB are 66 and 104 nm, respectively.  相似文献   

15.
A novel electrochemical biosensor was developed for detecting short DNA oligonucleotide of Bacillus thuringiensis (Bt) transgenic sequence based on Ag nanoparticle aggregates. To fabricate this DNA biosensor, the thiol-modified capture DNA (cDNA) was first anchored on gold (Au) electrode, and then the target DNA (tDNA) was hybridized with the immobilized cDNA. Subsequently, the probe DNA (pDNA) functionalized by biotinylated Ag nanoparticle was associated with the fixed tDNA, and the single Ag nanoparticle label was obtained (cited as SAg label). Finally, dissociative biotinylated Ag nanoparticle was bound to the resultant biotinylated SAg label assembled on Au electrode by virtue of bridge molecule streptavidin (SA) through biotin-SA specific interaction, which could lead to in situ aggregate of Ag nanoparticles on Au electrode and induce a novel tag including multiple Ag nanoparticles (cited as MAg tag). The novel tag exhibited excellent electroactive property in the solid-state Ag/AgCl process and was successfully applied to Bt transgenic sequence assay. A detection limit of 10 fM was achieved, which was improved by three orders of magnitude as compared to the SAg label. Furthermore, this novel DNA biosensor demonstrated a good selectivity towards tDNA.  相似文献   

16.
A surface plasmon resonance (SPR) biosensor system was developed for immunoassay, based on the conjugates of magnetic microbeads coupling with antibody which could be trapped on the Au film firmly due to the magnetic force. The magnetic microbeads were used as the solid support for the heat shock protein 70 (Hsp 70) antibody and antibody immobilized magnetic microbeads were utilized instead of the single antibody for the determination of Hsp 70. Since the magnetic bead is coated with dextran, the antibodies and some specific biomolecular receptors can be immobilized using a variety of chemical reactions. Compared to traditional antibody immobilization on the sensing film, there is not a covalent link between the Au film and the antibody. There is a great advantage in that sensor can be stripped and reused, and the same chemistry used to derivative dextran-coated SPR sensors can be used for the magnetic bead-coated sensors. The sensing layer was formed well. Different dilution ratios (v/v) of the conjugates result in different detectable ranges. When the dilution ratios of the conjugate are 1:10 and 1:5, the lowest concentrations of Hsp 70 that can be detected are 1.50 and 0.30 microg ml(-1), respectively.  相似文献   

17.
Du  Bobo  Yang  Yuan  Zhang  Yang  Yang  Dexing 《Plasmonics (Norwell, Mass.)》2019,14(2):457-463

In this article, a surface plasmon resonance (SPR) biosensor based on D-typed optical fiber coated by Al2O3/Ag/Al2O3 film is investigated numerically. Resonance in near infrared with an optimized architecture is achieved. Refractive index sensitivity of 6558 nm/RIU (refractive index unit) and detection limit of 1.5 × 10−6 RIU, corresponding to 0.4357 nm/μM and detection limit of 23 nM in BSA (bovine serum albumin) concentration sensing, are obtained. The analysis of the performance of the sensor in gaseous sensing indicates that this proposed SPR sensor is much suitable for label-free biosensing in aqueous media.

  相似文献   

18.
An absorption-based surface plasmon resonance (SPR(Abs)) biosensor probe has been developed for simple and reproducible measurements of hydrogen peroxide using a modified Trinder's reagent (a chromogenic reagent). The reagent enabled the determination of the hydrogen peroxide concentration by the development of deep color dyes (lambda(max)=630nm) through the oxidative coupling reaction with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethylaniline sodium salt monohydrate (MAOS; C(13)H(20)NNaO(4)S.H(2)O) and 4-aminoantipyrine (4-AA) in the presence of hydrogen peroxide and horseradish peroxidase (HRP). In the present study, urea as an adduct of hydrogen peroxide for color development could be omitted from the measurement solution. The measurement solution containing 5mM hydrogen peroxide was deeply colored at a high absorbance value calculated as 46.7cm(-1) and was directly applied to the SPR(Abs) biosensing without dilution. The measurement was simply performed by dropping the measurement solution onto the surface of the SPR sensor probe, and the SPR(Abs) biosensor response to hydrogen peroxide was obtained as a reflectivity change in the SPR spectrum. After investigation of the pH profiles in the SPR(Abs) biosensor probe, a linear calibration curve was obtained between 1.0 and 50mM hydrogen peroxide (r=0.991, six points, average of relative standard deviation; 0.152%, n=3) with a detection limit of 0.5mM. To examine the applicability of this SPR(Abs) biosensor probe, 20mM glucose detection using glucose oxidase was also confirmed without influence of the refractive index in the measurement solution. Thus, the SPR(Abs) biosensor probe employing the modified Trinder's reagent demonstrated applicability to other analyte biosensing tools.  相似文献   

19.

Noble metals, especially Ag and Au nanostructures, have unique and adjustable optical attributes in terms of surface plasmon resonance. In this research, the effect of Ag and Au nanoparticles with spherical and rod shapes on the light extraction efficiency and the FWHM of OLED structures was investigated using the finite difference time domain (FDTD) method. The simulation results displayed that by changing the shape and size of Ag and Au nanostructures, the emission wavelength can be adjusted, and the FWHM can be reduced. The presence of Ag and Au nanoparticles in the OLEDs showed a blue and red shift of the emission wavelength, respectively. Also, the Ag and Au nanorods caused a significant reduction in the FWHM and a shift to the longer wavelengths in the structures. The structures containing Ag nanorods showed the narrowest FWHM and longer emission wavelength than the other structures.

  相似文献   

20.
Au plasmonic hollow spherical nanostructures were synthesized by electrochemical reduction (GRR, the Galvanic Replacement Reaction) using Ag nanoparticles as templates. From UV-visible absorption spectroscopy, it was found that the surface plasmon resonance (SPR) of gold hollow spherical nanostructures first showed red shift and then blue shift. However, further addition of gold precursor (HAuCl4) resulted into a red shift of SPR peak. The morphological changes from Ag nanoparticles to Au hollow nanostructures were assessed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX)analysis. The Mie Scattering theory based simulations of SPR of Au hollow nanostructures were performed which are in good agreement with the experimental observations. Based on the experimental observations and theoretical calculations, a complete growth mechanism for Au hollow nanostructures is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号