首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hepatic circulation is unique in that high volumes of low pressure blood flow are supplied through a dual venous and arterial circulation. This vascular supply is modulated both by the gastrointestinal vascular bed and an intrahepatic microcirculation. This complex vascular system is influenced by pathologic processes within the liver. Alterations in the hepatic circulation reflect hepatic metabolic adaptation and injury. It seems reasonable to assume that in some circumstances hepatic circulatory alterations are inappropriate, exaggerated or inadequate and contribute to the initiation or perpetuation of hepatic injury. This paper attempts to focus on evidence derived from studies of the normal and abnormal hepatic circulation that provide insights into hepatic circulatory responses and their role in the initiation and perpetuation of hepatic injury. A possible relationship of these vascular changes to pathologic processes within the liver is proposed. Ultimately, precise measurement and understanding of hepatic vasculature changes may allow appropriate intervention to offset injury or stimulate maximum effective repair.  相似文献   

2.
促肝细胞生长物质对实验性肝损伤动物的肝脏修复作用   总被引:1,自引:0,他引:1  
本实验测定了促肝细胞生长物质对CCl4 诱导的中毒性肝损伤及D 氨基半乳糖致急性肝衰竭的动物的恢复与治疗作用 ,发现促肝细胞生长物质能促进受损肝细胞的增长 ,迅速降低肝损伤后的ALT水平 ,降低肝衰竭动物的死亡率 ,对肝脏起很好的保护作用。并发现促肝细胞生长物质还能减少受损肝组织中的纤维细胞 ,防止肝硬化的形成。  相似文献   

3.
Hepatic blood flow and lidocaine uptake were measured using a hepatic venous long-circuit preparation in cats anesthetized with pentobarbital-Na. The processes involved with hepatic elimination of lidocaine were not affected by stimulation of the hepatic nerves. The lack of neural influence on hepatic extraction ratios of lidocaine supports the contention that nerve stimulation does not result in shunting or redistribution of blood to non-nutritive sites. In species which do not show complete vascular escape from neurogenic vasoconstriction, a reduced lidocaine elimination would be anticipated since it was shown that reduced hepatic blood flow results in reduced lidocaine elimination. In the intact rat one third of the lidocaine in the blood was extracted on each passage through the liver. This extraction ratio is not affected by arterial levels of lidocaine, by changes in blood flow or by activation of the hepatic nerves.  相似文献   

4.
Acetaminophen, a widely prescribed analgesic that causes fulminant hepatic necrosis in overdosed humans, produced varying degrees of hepatotoxixity in mice, rats, hamsters, guinea pigs and rabbits. The severity of hepatic injury paralleled the rate of activation of acetaminophen by hepatic microsomal enzymes to a potent arylating agent. The severity of hepatic damage in various species also correlated directly with the rate of hepatic glutathione depletion after acetaminophen. These findings support the hypothesis that the electrophilic arylating agent formed from acetaminophen invibo is preferentially detoxified by conjugation with glutathione and that arylation of hepatic macromolecules occurs only when glutathione availability is exceeded. Since N-hydroxylation of another N-acetylarylamine (2-acetylaminofluorene) occurs to a much greater extent in the species that are susceptible to acetaminophen-induced hepatic necrosis, the data also are consistent with the hypothesis that the toxic metabolite of acetaminophen results from N-hydroxylation.  相似文献   

5.
The equilibrium pressure obtained during simultaneous occlusion of hepatic vascular inflow and outflow was taken as the reference estimate of hepatic vascular distending pressure (P(hd)). P(hd) at baseline was 1.1 +/- 0.2 (mean +/- SE) mmHg higher than hepatic vein pressure (P(hv)) and 0.7 +/- 0.3 mmHg lower than portal vein pressure (P(pv)). Norepinephrine (NE) infusion increased P(hd) by 1. 5 +/- 0.5 mmHg and P(pv) by 3.7 +/- 0.6 mmHg but did not significantly increase P(hv). Hepatic lobar vein pressure (P(hlv)) measured by a micromanometer tipped 2-Fr catheter closely resembled P(hd) both at baseline and during NE-infusion. Dynamic pressure-volume (PV) curves were constructed from continuous measurements of P(hv) and hepatic blood volume increases (estimated by sonomicrometry) during brief occlusions of hepatic vascular outflow and compared with static PV curves constructed from P(hd) determinations at five different hepatic volumes. Estimates of hepatic vascular compliance and changes in unstressed blood volume from the two methods were in close agreement with hepatic compliance averaging 32 +/- 2 ml. mmHg(-1). kg liver(-1). NE infusion reduced unstressed blood volume by 110 +/- 38 ml/kg liver but did not alter compliance. In conclusion, P(hlv) reflects hepatic distending pressure, and the construction of dynamic PV curves is a fast and valid method for assessing hepatic compliance and changes in unstressed blood volume.  相似文献   

6.
After a brief introduction to oxidative stress, the discovery of F(2)-isoprostanes as specific and reliable markers of oxidative stress is described. Isoprostanes are also agonists of important biological effects. Since a relation between oxidative stress and collagen hyperproduction has been previously suggested and since lipid peroxidation products have been proposed as possible mediators of liver fibrosis, we investigated whether collagen synthesis is induced by F(2)-isoprostanes the most proximal products of lipid peroxidation. In a rat model of carbon tetrachloride-induced hepatic fibrosis, plasma isoprostanes were markedly elevated for the entire experimental period; hepatic collagen content was also increased. When hepatic stellate cells from normal liver were cultured up to activation (expression of alpha-smooth muscle-alpha actin) and then treated with F(2)-isoprostanes in the concentration range found in the in vivo studies (10(-9)-10(-8)M), a striking increase in DNA synthesis, in cell proliferation and in collagen synthesis was observed. Moreover, F(2)-isoprostanes increased the production of transforming growth factor-beta1 by U937 cells, assumed as a model of Kupffer cells or liver macrophages. The data suggest the possibility that F(2)-isoprostanes generated by lipid peroxidation in hepatocytes mediate hepatic stellate cell proliferation and collagen hyperproduction seen in hepatic fibrosis.  相似文献   

7.
STAT3 regulates glucose homeostasis by suppressing the expression of gluconeogenic genes in the liver. The mechanism by which hepatic STAT3 is regulated by nutritional or hormonal status has remained unknown, however. Here, we show that an increase in the plasma insulin concentration, achieved either by glucose administration or by intravenous insulin infusion, stimulates tyrosine phosphorylation of STAT3 in the liver. This effect of insulin was mediated by the hormone's effects in the brain, and the increase in hepatic IL-6 induced by the brain-insulin action is essential for the activation of STAT3. The inhibition of hepatic glucose production and of expression of gluconeogenic genes induced by intracerebral ventricular insulin infusion was impaired in mice with liver-specific STAT3 deficiency or in mice with IL-6 deficiency. These results thus indicate that IL-6-STAT3 signaling in the liver contributes to insulin action in the brain, leading to the suppression of hepatic glucose production.  相似文献   

8.
General anesthesia and hepatic circulation   总被引:5,自引:0,他引:5  
This article describes hepatic circulatory disturbances associated with anesthesia and surgical intervention. The material is presented in three parts: part 1 describes the effects of general anesthetics on the hepatic circulation; part 2 deals with different factors related to surgical procedures and anesthesia; and part 3 analyzes the role of hepatic circulatory disturbances and hepatic oxygen deprivation in anesthesia-induced hepatotoxicity. The analysis of available data suggests that general anesthesia affects the splanchnic and hepatic circulation in various directions and to different degrees. The majority of anesthetics decreases portal blood flow in association with a decrease in cardiac output. However, hepatic arterial blood flow can be preserved, decreased, or increased. The increase in hepatic arterial blood flow, when it occurs, is usually not enough to compensate for a decrease in portal blood flow and therefore total hepatic blood flow is usually decreased during anesthesia. This decrease in total hepatic blood flow has certain pharmacokinetic implications, namely a decrease in clearance of endogenous and exogenous substances with a high hepatic extraction ratio. On the other hand, a reduction in the hepatic oxygen supply might play a certain role in liver dysfunction occurring perioperatively. Surgical procedures-preparations combined with anesthesia have a very complex effect on the splanchnic and hepatic circulation. Within this complex, the surgical procedure-preparation plays the main role in developing circulatory disturbances, while anesthesia plays only a modifying role. Hepatic oxygen deprivation may play an important role in anesthesia-induced hepatotoxicity in different experimental models.  相似文献   

9.
In rat liver, allylisopropylacetamide (AIA) treatment strongly induced (25-fold) the activity of rat hepatic ornithine decarboxylase (ODC). By either the oral or the subcutaneous route, AIA produced a long-lasting induction (30 to 40 hours) of hepatic ODC activity. Three analogs of AIA, propylisopropylacetamide (PIA), allobarbital, and allylbenzene, were active ODC inducers while a fourth, allylacetate, was not. Although induction of hepatic aminolevulinic acid (ALA) synthetase activity and the accumulation of hepatic porphyrins depend on the allyl moiety of AIA, this is not the case with hepatic ODC induction. Allylisopropylacetamide did not elevate serum alanine aminotransferase (SGPT) nor did it cause DNA damage, as measured by the alkaline elution assay. Thus, hepatic cell death is not a likely explanation of AIA's long-lasting induction of ODC. As AIA does not belong to any of the common categories of ODC inducers, it may be the chemical prototype of a new class of hepatic ODC inducers.  相似文献   

10.
In a kindred with three hyperlipidemic subjects who had premature atherosclerosis and complete deficiency of hepatic lipase activity, we had previously identified a novel structural hepatic lipase gene variant. We now report the identification of three more hepatic lipase gene mutations in this family and demonstrate that compound heterozygosity for two hepatic lipase mutations (designated S267F and T383M) underlies hepatic lipase deficiency.  相似文献   

11.
Restriction of hepatic competence by Fgf signaling   总被引:1,自引:0,他引:1  
  相似文献   

12.
Thyrotoxicosis is known to induce a broad range of changes in carbohydrate metabolism. Recent studies have identified the sympathetic and parasympathetic nervous system as major regulators of hepatic glucose metabolism. The present study aimed to investigate the pathogenesis of altered endogenous glucose production (EGP) in rats with mild thyrotoxicosis. Rats were treated with methimazole in drinking water and l-thyroxine (T(4)) from osmotic minipumps to either reinstate euthyroidism or induce thyrotoxicosis. Euthyroid and thyrotoxic rats underwent either a sham operation, a selective hepatic sympathetic denervation (Sx), or a parasympathetic denervation (Px). After 10 days of T(4) administration, all animals were submitted to a hyperinsulinemic euglycemic clamp combined with stable isotope dilution to measure EGP. Plasma triiodothyronine (T(3)) showed a fourfold increase in thyrotoxic compared with euthyroid animals. EGP was increased by 45% in thyrotoxic compared with euthyroid rats and correlated significantly with plasma T(3). In thyrotoxic rats, hepatic PEPCK mRNA expression was increased 3.5-fold. Relative suppression of EGP during hyperinsulinemia was 34% less in thyrotoxic than in euthyroid rats, indicating hepatic insulin resistance. During thyrotoxicosis, Sx attenuated the increase in EGP, whereas Px resulted in increased plasma insulin with unaltered EGP compared with intact animals, compatible with a further decrease in hepatic insulin sensitivity. We conclude that chronic, mild thyrotoxicosis in rats increases EGP, whereas it decreases hepatic insulin sensitivity. Sympathetic hepatic innervation contributes only to a limited extent to increased EGP during thyrotoxicosis, whereas parasympathetic hepatic innervation may function to restrain EGP in this condition.  相似文献   

13.
The mechanism by which atorvastatin lowers plasma triglyceride (TG) levels is mainly through a decrease in hepatic TG secretion. However, it is not clear why atorvastatin, which does not inhibit TG synthesis in vitro, decreases hepatic TG secretion without a prospective increase in hepatic TG concentration. For the investigation of the mechanisms that underlie the hypotriglyceridemic effects of atorvastatin, we characterized the effect of either a single or an 11 day administration of atorvastatin in sucrose-induced hypertriglyceridemic rats. Atorvastatin (30 mg/kg p.o.) strongly decreased the rate of both very-low-density lipoprotein (VLDL)-TG and VLDL-apolipoprotein B secretion. The inhibitor also decreased hepatic TG concentration. Hepatic TG synthesis activity was also decreased by atorvastatin, and its activity was correlated with both hepatic and plasma TG concentration. There was also a strong correlation between the hepatic TG synthesis and hepatic non-esterified fatty acid (NEFA) concentration (r(2)=0.815). These effects required chronic administration of the inhibitor and were not observed by acute treatment. Repeated administration of atorvastatin also strongly reduced hepatic acyl-coenzyme A synthase mRNA levels. These results suggest that the reduced hepatic NEFA most likely lowers hepatic TG synthesis and TG secretion in sucrose-fed hypertriglyceridemic rats.  相似文献   

14.
Hepatic steatosis is one of the most common liver disorders in the general population. The main cause of hepatic steatosis is nonalcoholic fatty liver disease (NAFLD), representing the hepatic component of the metabolic syndrome, which is characterized by type 2 diabetes, obesity, and dyslipidemia. Insulin resistance and excess adiposity are considered to play key roles in the pathogenesis of NAFLD. Although the risk factors for NAFLD are well established, the genetic basis of hepatic steatosis is largely unknown. Here we review recent progress on genomic variants and their association with hepatic steatosis and discuss the potential impact of these genetic studies on clinical practice. Identifying the genetic determinants of hepatic steatosis will lead to a better understanding of the pathogenesis and progression of NAFLD.  相似文献   

15.
16.
Hepatic fatty acid elongase-5 (Elovl-5) plays an important role in long chain monounsaturated and polyunsaturated fatty acid synthesis. Elovl-5 activity is regulated during development, by diet, hormones, and drugs, and in chronic disease. This report examines the impact of elevated Elovl-5 activity on hepatic function. Adenovirus-mediated induction of Elovl5 activity in livers of C57BL/6 mice increased hepatic and plasma levels of dihomo-gamma-linolenic acid (20:3,n-6) while suppressing hepatic arachidonic acid (20:4,n-6) and docosahexaenoic acid (22:6,n-3) content. The fasting-refeeding response of peroxisome proliferator-activated receptor alpha-regulated genes was attenuated in mice with elevated Elovl5 activity. In contrast, the fasting-refeeding response of hepatic sterol-regulatory element binding protein-1 (SREBP-1)-regulated and carbohydrate-regulatory element binding protein/Max-like factor X-regulated genes, Akt and glycogen synthase kinase (Gsk)-3beta phosphorylation, and the accumulation of hepatic glycogen content and nuclear SREBP-1 were not impaired by elevated Elovl5 activity. Hepatic triglyceride content and the phosphorylation of AMP-activated kinase alpha and Jun kinase 1/2 were reduced by elevated Elovl5 activity. Hepatic phosphoenolpyruvate carboxykinase expression was suppressed, while hepatic glycogen content and phosphorylated Gsk-3beta were significantly increased, in livers of fasted mice with increased Elovl5 activity. As such, hepatic Elovl5 activity may affect hepatic glucose production during fasting. In summary, Elovl5-induced changes in hepatic fatty acid content affect multiple pathways regulating hepatic lipid and carbohydrate composition.  相似文献   

17.
Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF.  相似文献   

18.
Obesity-associated insulin resistance (IR) is a major risk factor for developing type 2 diabetes and an array of other metabolic disorders. In particular, hepatic IR contributes to the increase in hepatic glucose production and consequently the development of fasting hyperglycemia. In this study, we explored whether kaempferol, a flavonoid isolated from Gink go biloba, is able to regulate hepatic gluconeogenesis and blood glucose homeostasis in high-fat diet-fed obese mice and further explored the underlying mechanism by which it elicits such effects. Oral administration of kaempferol (50 mg/kg/day), which is the human equivalent dose of 240 mg/day for an average 60 kg human, significantly improved blood glucose control in obese mice, which was associated with reduced hepatic glucose production and improved whole-body insulin sensitivity without altering body weight gain, food consumption or adiposity. In addition, kaempferol treatment increased Akt and hexokinase activity, but decreased pyruvate carboxylase (PC) and glucose-6 phosphatase activity in the liver without altering their protein expression. Consistently, kaempferol decreased PC activity and suppressed gluconeogenesis in HepG2 cells as well as primary hepatocytes isolated from the livers of obese mice. Furthermore, we found that kaempferol is a direct inhibitor of PC. These findings suggest that kaempferol may be a naturally occurring antidiabetic compound that acts by suppressing glucose production and improving insulin sensitivity. Kaempferol suppression of hepatic gluconeogenesis is due to its direct inhibitory action on the enzymatic activity of PC.  相似文献   

19.
We assessed the effects of Picual and Arbequina olive oil, rich and poor in polyphenols, respectively, on plasma lipid and glucose metabolism, hepatic fat content, and the hepatic proteome in female Apoe-/- mice. Both olive oils increased hepatic fat content and adipophilin levels (p < 0.05), though Picual olive oil significantly decreased plasma triglycerides (p < 0.05). Proteomics identified a range of hepatic antioxidant enzymes that were differentially regulated by both olive oils as compared with palm oil. We found a clear association between olive oil consumption and differential regulation of adipophilin and betaine homocysteine methyl transferase as modulators of hepatic triglyceride metabolism. Therefore, our "systems biology" approach revealed hitherto unrecognized insights into the triglyceride-lowering and anti-atherogenic mechanisms of extra virgin olive oils, wherein the up-regulation of a large array of anti-oxidant enzymes may offer sufficient protection against lesion development and diminish oxidative stress levels instigated by hepatic steatosis.  相似文献   

20.
An inhibitor of hepatic cholesterol synthesis present in hepatic microsomes can be solubilized either by an acetone or an ethanol powder preparation. Other methods such as methanol and chloroform:methanol powder preparations and treatment with EDTA do not solubilize the factor. The factor appears to be proteinaceous since its activity is lost after exposure to proteolytic enzymes and heat treatment. In addition, the inhibitor does not require a phospholipid for activity. 3this inhibitor is stable for long periods (60 hrs.) at room temperature and can be isolated in good yield from liver maintained at 4 degrees C for 8 hours postmortem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号