首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genetic resistance provides efficient control of crop diseases, but is limited by pathogen evolution capacities which often result in resistance breakdown. It has been demonstrated recently, in three different pathosystems, that polygenic resistances combining a major‐effect gene and quantitative resistance controlled by the genetic background are more durable than monogenic resistances (with the same major gene in a susceptible genetic background), but the underlying mechanisms are unknown. Using the pepper–Potato virus Y system, we examined three mechanisms that could account for the greater durability of the polygenic resistances: (i) the additional quantitative resistance conferred by the genetic background; (ii) the increase in the number of mutations required for resistance breakdown; and (iii) the slower selection of adapted resistance‐breaking mutants within the viral population. The three mechanisms were experimentally validated. The first explained a large part of the variation in resistance breakdown frequency and is therefore expected to be a major determinant of resistance durability. Quantitative resistance factors also had an influence on the second mechanism by modifying the virus mutational pathways towards resistance breakdown and could also have an influence on the third mechanism by increasing genetic drift effects on the viral population. The relevance of these results for other plant–pathogen systems and their importance in plant breeding are discussed.  相似文献   

3.
Molecular genetics of disease resistance in cereals   总被引:13,自引:0,他引:13  
AIMS: This Botanical Briefing attempts to summarize what is currently known about the molecular bases of disease resistance in cereal species and suggests future research directions. SCOPE: An increasing number of resistance (R) genes have been isolated from rice, maize, wheat and barley that encode both structurally related and unique proteins. This R protein diversity may be attributable to the different modus operandi employed by pathogen species in some cases, but it is also a consequence of multiple defence strategies being employed against phytopathogens. Mutational analysis of barley has identified additional genes required for activation of an R gene-mediated defence response upon pathogen infection. In some instances very closely related barley R proteins require different proteins for defence activation, demonstrating that, within a single plant species, multiple resistance signalling pathways and different resistance strategies have evolved to confer protection against a single pathogen species. Despite the apparent diversity of cereal resistance mechanisms, some of the additional molecules required for R protein function are conserved amongst cereal and dicotyledonous species and even other eukaryotic species. Thus the derivation of functional homologues and interacting partner proteins from other species is contributing to the understanding of resistance signalling in cereals. The potential and limit of utilizing the rice genome sequence for further R gene isolation from cereal species is also considered, as are the new biotechnological possibilities for disease control arising from R gene isolation. CONCLUSIONS: Molecular analyses in cereals have further highlighted the complexity of plant-pathogen co-evolution and have shown that numerous active and passive defence strategies are employed by plants against phytopathogens. Many advances in understanding the molecular basis of disease resistance in cereals have focused on monogenic resistance traits. Future research targets are likely to include less experimentally tractable, durable polygenic resistances and nonhost resistance mechanisms.  相似文献   

4.
5.
6.
Tomato powdery mildew caused by Oidium neolycopersici has become a globally important disease of tomato (Lycopersicon esculentum). To study the defense responses of tomato triggered by tomato powdery mildew, we first mapped a set of resistance genes to O. neolycopersici from related Lycopersicon species. An integrated genetic map was generated showing that all the dominant resistance genes (Ol-1, Ol-3, Ol-4, Ol-5, and Ol-6) are located on tomato chromosome 6 and are organized in three genetic loci. Then, near-isogenic lines (NIL) were produced that contain the different dominant Ol genes in a L. esculentum genetic background. These NIL were used in disease tests with local isolates of O. neolycopersici in different geographic locations, demonstrating that the resistance conferred by different Ol genes was isolate-dependent and, hence, may be race-specific. In addition, the resistance mechanism was analyzed histologically. The mechanism of resistance conferred by the dominant Ol genes was associated with hypersensitive response, which varies in details depending on the Ol-gene in the NIL, while the mechanism of resistance governed by the recessive gene ol-2 on tomato chromosome 4 was associated with papillae formation.  相似文献   

7.
Evolution of herbicide resistance in weeds is a growing problem across the world, and it has been suggested that low herbicide rates may be contributing to this problem. An individual-based simulation model that represents weed population dynamics and the evolution of polygenic herbicide resistance was constructed and used to investigate whether using lower herbicide rates or standard rates at reduced efficacy could reduce the sustainability of cropping systems by causing faster increases in weed population density as herbicide resistance develops. A number of different possible genetic bases for resistance were considered, including monogenic resistance and polygenic resistance conferred by several genes. The results show that cutting herbicide rates does not affect the rate at which weed densities reach critical levels when resistance is conferred exclusively by a single dominant gene. In some polygenic situations, cutting herbicide rates substantially reduces sustainability, due to a combination of faster increase in resistance gene frequency and reduced kill rates in all genotypes, while in other polygenic situations the effect is small. Differences in sustainability depend on combined strength of the resistance genes, variability in phenotypic susceptibility and rate delivered, level of control due to alternative measures, and degree of genetic dominance and epistasis. In the situation where resistance can be conferred by both a single dominant major gene or a number of co-dominant minor genes in combination, the difference made by low rates depends on the relative initial frequency of the major and minor genes. These results show that careful consideration of herbicide rate and understanding the genetic basis of resistance are important aspects of weed management.  相似文献   

8.
On the short arm of tomato chromosome 6, a cluster of disease resistance (R) genes have evolved harboring the Mi-1 and Cf genes. The Mi-1 gene confers resistance to root-knot nematodes, aphids, and whiteflies. Previously, we mapped two genes, Ol-4 and Ol-6, for resistance to tomato powdery mildew in this cluster. The aim of this study was to investigate whether Ol-4 and Ol-6 are homologues of the R genes located in this cluster. We show that near-isogenic lines (NIL) harboring Ol-4 (NIL-Ol-4) and Ol-6 (NIL-Ol-6) are also resistant to nematodes and aphids. Genetically, the resistance to nematodes cosegregates with Ol-4 and Ol-6, which are further fine-mapped to the Mi-1 cluster. We provide evidence that the composition of Mi-1 homologues in NIL-Ol-4 and NIL-Ol-6 is different from other nematode-resistant tomato lines, Motelle and VFNT, harboring the Mi-1 gene. Furthermore, we demonstrate that the resistance to both nematodes and tomato powdery mildew in these two NIL is governed by linked (if not the same) Mi-1 homologues in the Mi-1 gene cluster. Finally, we discuss how Solanum crops exploit Mi-1 homologues to defend themselves against distinct pathogens.  相似文献   

9.
The resistant cherry tomato (Solanum lycopersicum var. cerasiforme) line LC-95, derived from an accession collected in Ecuador, harbors a natural allele (ol-2) that confers broad-spectrum and recessively inherited resistance to powdery mildew (Oidium neolycopersici). As both the genetic and phytopathological characteristics of ol-2-mediated resistance are reminiscent of powdery mildew immunity conferred by loss-of-function mlo alleles in barley and Arabidopsis, we initiated a candidate-gene approach to clone Ol-2. A tomato Mlo gene (SlMlo1) with high sequence-relatedness to barley Mlo and Arabidopsis AtMLO2 mapped to the chromosomal region harboring the Ol-2 locus. Complementation experiments using transgenic tomato lines as well as virus-induced gene silencing assays suggested that loss of SlMlo1 function is responsible for powdery mildew resistance conferred by ol-2. In progeny of a cross between a resistant line bearing ol-2 and the susceptible tomato cultivar Moneymaker, a 19-bp deletion disrupting the SlMlo1 coding region cosegregated with resistance. This polymorphism results in a frameshift and, thus, a truncated nonfunctional SlMlo1 protein. Our findings reveal the second example of a natural mlo mutant that possibly arose post-domestication, suggesting that natural mlo alleles might be evolutionarily short-lived due to fitness costs related to loss of mlo function.  相似文献   

10.
Lines from a Lemont x Teqing recombinant inbred population were evaluated for dilatory resistance to rice blast disease using: (1) the Standard Evaluation System (SES) for rating leaf blast, (2) the percentage diseased leaf area (%DLA), and (3) the area under a disease progress curve (AUDPC). RFLP mapping using 175 well-distributed loci revealed nine QTLs, one each on chromosomes 1, 2, 3, 4, 6, 7 and 9, with two loci on chromosome 12. All nine putative QTLs were associated with AUDPC, six with both a %DLA and a SES rating. Teqing contributed the resistance allele for all these loci except for the one located on chromosome 4. Individual QTLs accounted for 5-32% of the observed phenotypic variation, and combined QTL models accounted for 43-53%. Three QTLs were located near three of the four major resistance genes previously identified in this population. The resistances of both Lemont and Teqing were attributable to a combination of both major genes capable of inducing hypersensitive reactions and minor genes causing less-distinctive phenotypic differences. Interactions were noted between QTLs and major genes. Our findings are in support of the strategy of pyramiding major genes and QTLs in carefully selected combinations to develop improved varieties with resistance to the blast fungus that is both broad in spectrum and durable.  相似文献   

11.
Tomato (Lycopersicon esculentum) is susceptible to the powdery mildew Oidium lycopersici, but several wild relatives such as Lycopersicon parviflorum G1.1601 are completely resistant. An F2 population from a cross of Lycopersicon esculentum cv. Moneymaker x Lycopersicon parviflorum G1.1601 was used to map the O. lycopersici resistance by using amplified fragment length polymorphism markers. The resistance was controlled by three quantitative trait loci (QTLs). Ol-qtl1 is on chromosome 6 in the same region as the Ol-1 locus, which is involved in a hypersensitive resistance response to O. lycopersici. Ol-qtl2 and Ol-qtl3 are located on chromosome 12, separated by 25 cM, in the vicinity of the Lv locus conferring resistance to another powdery mildew species, Leveillula taurica. The three QTLs, jointly explaining 68% of the phenotypic variation, were confirmed by testing F3 progenies. A set of polymerase chain reaction-based cleaved amplified polymorphic sequence and sequence characterized amplified region markers was generated for efficient monitoring of the target QTL genomic regions in marker assisted selection. The possible relationship between genes underlying major and partial resistance for tomato powdery mildew is discussed.  相似文献   

12.
13.
Lycopersicon hirsutum G1.1560 is a wild accession of tomato that shows resistance to Oidium lycopersicum, a frequently occurring tomato powdery mildew. This resistance is largely controlled by an incompletely dominant gene Ol-1 near the Aps-1 locus in the vicinity of the resistance genes Mi and Cf-2/Cf-5. Using a new F2 population (n=150) segregating for resistance, we mapped the Ol-1 gene more accurately to a location between the RFLP markers TG153 and TG164. Furthermore, in saturating the Ol-1 region with more molecular markers using bulked segregant analysis, we were able to identify five RAPDs associated with the resistance. These RAPDs were then sequenced and converted into SCAR markers: SCAB01 and SCAF10 were L. hirsutum-specific; SCAE16, SCAG11 and SCAK16 were L. esculentum-specific. By linkage analysis a dense integrated map comprising RFLP and SCAR markers near Ol-1 was obtained. This will facilitate a map-based cloning approach for Ol-1 and marker-assisted selection for powdery mildew resistance in tomato breeding. Received: 21 June 1999 / Accepted: 1 December 1999  相似文献   

14.
 Rice yellow mottle virus (RYMV) resistance QTLs were mapped in a doubled-haploid population of rice, ‘IR64/Azucena’. Disease impact on plant morphology and development, expression of symptoms and virus content were evaluated in field conditions. Virus content was also assessed in a growth chamber. RYMV resistance was found to be under a polygenic determinism, and 15 QTLs were detected on seven chromosomal fragments. For all of the resistance QTLs detected, the favourable allele was provided by the resistant parent ‘Azucena’. Three regions were determined using different resistance parameters and in two environments. On chromosome 12, a QTL of resistance that had already been detected in this population and another indica/japonica population was confirmed both in the field and under controlled conditions. Significant correlations were observed between resistance and tillering ability, as measured on control non-inoculated plants. In addition, the three genomic fragments involved in resistance were also involved in plant architecture and development. In particular, the semi-dwarfing gene sd-1, on chromosome 1, provided by the susceptible parent, ‘IR64’, mapped in a region where resistance QTLs were detected with most of the resistance parameters. In contrast, the QTL of resistance mapped on chromosome 12 was found to be independent of plant morphology. Received: 20 April 1998 / Accepted: 30 April 1998  相似文献   

15.
Pyramiding of genes that confer partial resistance is a method for developing wheat (Triticum aestivum L.) cultivars with durable resistance to leaf rust caused by Puccinia triticina. In this research, a doubled haploid population derived from the cross between the synthetic hexaploid wheat (SHW) (×Aegilotriticum spp.) line TA4152-60 and the North Dakota breeding line ND495 was used for identifying genes conferring partial resistance to leaf rust in both the adult plant and seedling stages. Five QTLs located on chromosome arms 3AL, 3BL, 4DL, 5BL and 6BL were associated with adult plant resistance with the latter four representing novel leaf rust resistance QTLs. Resistance effects of the 4DL QTL were contributed by ND495 and the effects of the other QTLs were contributed by the SHW line. The QTL on chromosome arm 3AL had large effects and also conferred seedling resistance to leaf rust races MJBJ, TDBG and MFPS. The other major QTL, which was on chromosome arm 3BL, conferred seedling resistance to race MFPS and was involved in a significant interaction with a locus on chromosome arm 5DS. The QTLs and the associated molecular markers identified in this research can be used to develop wheat cultivars with potentially durable leaf rust resistance.  相似文献   

16.
Rice diseases (bacterial, fungal, or viral) threaten food productivity. Host resistance is the most efficient, environmentally friendly method to cope with such diverse pathogens. Quantitative resistance conferred by quantitative trait loci (QTLs) is a valuable resource for rice disease resistance improvement. Although QTLs confer partial but durable resistance to many pathogen species in different crop plants, the molecular mechanisms of quantitative disease resistance remain mostly unknown. Quantitative resistance and non-host resistance are types of broad-spectrum resistance, which are mediated by resistance (R) genes. Because R genes activate different resistance pathways, investigating the genetic spectrum of resistance may lead to minimal losses from harmful diseases. Genome studies can reveal interactions between different genes and their pathways and provide insight into gene functions. Protein–protein interaction (proteomics) studies using molecular and bioinformatics tools may further enlighten our understanding of resistance phenomena.  相似文献   

17.
Adaptation of populations to new environments is frequently costly due to trade‐offs between life history traits, and consequently, parasites are expected to be locally adapted to sympatric hosts. Also, during adaptation to the host, an increase in parasite fitness could have direct consequences on its aggressiveness (i.e. the quantity of damages caused to the host by the virus). These two phenomena have been observed in the context of pathogen adaptation to host's qualitative and monogenic resistances. However, the ability of pathogens to adapt to quantitative polygenic plant resistances and the consequences of these potential adaptations on other pathogen life history traits remain to be evaluated. Potato virus Y and two pepper genotypes (one susceptible and one with quantitative resistance) were used, and experimental evolutions showed that adaptation to a quantitative resistance was possible and resulted in resistance breakdown. This adaptation was associated to a fitness cost on the susceptible cultivar, but had no consequence either in terms of aggressiveness, which could be explained by a high tolerance level, or in terms of aphid transmission efficiency. We concluded that quantitative resistances are not necessarily durable but management strategies mixing susceptible and resistant cultivars in space and/or in time should be useful to preserve their efficiency.  相似文献   

18.
We recently showed that the Lr10 wheat leaf rust resistance gene cosegregated with the candidate resistance gene Lrk10 which encodes a putative receptor-like kinase. The aim of this study was to develop Lrk10-derived molecular markers for the detection of the Lr10 gene in breeding material. Different subfragments of Lrk10 were tested as RFLP markers for the Lr10 resistance gene. The most specific fragment (Lrk10-6) was converted into the PCR-based STS marker STSLrk10-6. Both the RFLP and the STS marker did not give a signal with near isogenic lines containing a different Lr gene. The applicability of these markers for the detection of Lr10 in genetically diverse material was tested with 62 wheat and spelt breeding lines, mostly from European breeding programmes. Twelve varieties known to have Lr10 showed the same alleles as the originally characterized line ThatcherLr10. Most of the lines with unknown composition at the Lr10 locus had a null allele with both the RFLP marker Lrk10-6 and the marker STSLrk10-6 whereas 20% of the lines had a different allele. For six lines, including a traditional spelt variety derived from a landrace, both markers showed the same allele as Thatcher Lr10. Artificial infections of these lines with an isolate avirulent on Lr10 resulted in a hypersensitive reaction of all these lines, indicating also the presence of the Lr10 resistance gene. These data demonstrate that the markers derived from sequences of Lrk10 are highly specific for the Lr10 gene in breeding material of very diverse genetic origin. The markers will allow the defined deployment of Lr10 in wheat breeding programmes and will contribute to the elucidation of the role of Lr10 in polygenic resistances against leaf rust.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号