首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 670 毫秒
1.
2.
3.
4.
5.
Surface antigen variability and variation in Giardia lamblia   总被引:22,自引:0,他引:22  
Recent studies show that Giardia isolates are heterogeneous but fall into at least three groups as determined by a number of complementary techniques. Giardia undergoes surface antigenic variation, both in vitro, and in humans and other animal model infections. Many of the characteristics of antigenic variation and the proteins involved, called variant-specific surface proteins (VSPs), are unique. The sequences of five VSPs reveal a family of cysteine-rich proteins. Here Theodore Nash reviews the relationship between antigenic variation and Giardia heterogeneity.  相似文献   

6.
Giardia lamblia consist of heterogeneous isolates that can be divided into at least three groups. Differential screening of a cDNA library with isolate-specific antisera identified a gene which is expressed and found only in Group 3 isolates. This gene, GLORF-C4, is 597 bp in length and predicts a deduced protein of 198 amino acids that is characterized by a polyserine motif. Giardia can also be grouped by their ability to express certain variant-specific surface proteins (VSPs), expression of which is restricted among groups. In Southern blots, probes specific to two VSPs were used to characterize isolates. Failure to detect VSP genes correlated with inability to express the same VSP. Analysis of isolates with these new probes complements and confirms the groupings previously suggested using other criteria. These genetic differences should allow differentiation of isolates and permit the application of basic epidemiological techniques to determine the manner of spread and the presence of animal reservoirs.  相似文献   

7.
The adhesion of Giardia duodenalis trophozoites to intestinal epithelial cells allows the onset and maintenance of giardiasis. During these interactions, epithelial cells can be committed to apoptosis by enzymes secreted by the parasites, including cysteine proteases that are increasingly identified as virulence factors in parasitic protozoa. In this work, a monoclonal antibody (mAb1G3) raised against G. duodenalis surface components was found to react with a 25?kDa protein expressed in the cell surface and flagella of G. duodenalis trophozoites. When trophozoites expressing this protein were cultured with IEC-6 intestinal epithelial cell monolayers, a dynamic release of this protein was observed with mAbIG3. Proteomic analysis identified the protein as a mature cathepsin B-like (gCatB) enzyme, whose proteolytic activity, detected in zymograms, was eliminated by CatB inhibitor E-64. This protein was named giardipain-1 due to its functional papain-like features and was purified by affinity chromatography using mAbIG3. Upon exposure to the purified, mature and secreted forms of giardipain-1, IEC-6 epithelial cell monolayers displayed membrane blebbing and phosphatidylserine exposure on the outer cell surface, indicating an apoptotic process. In Madin Darby Canine Kidney (MDCK) cell monolayers, giardipain-1 leads to the appearance of pore-like regions and of gaps along cell–cell junctions, to decreased transepithelial electrical resistance (TER), caspase-3 activation and poly-ADP-ribose polymerase (PARP) fragmentation. At early times during exposure, giardipain-1 co-localized at cell–cell junctions, associated with occludin and induced the delocalization and degradation of tight junction proteins occludin and claudin-1. The damage caused to epithelial monolayers by giardipain-1 was blocked by pre-incubation with the CatB B Inhibitor E-64. Furthermore, silencing the giardipain-1 gene in trophozoites lowered the proteolytic activity of giardipain-1 and reduced the damage in IEC-6 monolayers. The damage observed appears to be specific to giardipain activity since almost no damage was observed when IEC-6 monolayers were incubated with papain, a non-related cysteine protease. Hence this study suggests that giardipain-1 triggers, in epithelial cells, degradation of cell–cell junctional components and apoptotic damage, supporting the notion of giardiapain-1 as a virulence factor of Giardia.  相似文献   

8.
Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates) trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate) trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1), suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK). Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.  相似文献   

9.
Giardia lamblia, a common intestinal dwelling protozoan and a cause of diarrhoea in humans and animals world-wide, undergoes surface antigenic variation. The variant-specific surface proteins (VSPs) are a family of related, highly unusual proteins that cover the entire surface of the parasite. VSPs are cysteine-rich proteins containing many CXXC motifs, one or two GGCY motifs, a conserved hydrophobic tail and a Zn finger motif. The biological role(s) of VSPs is unclear. As VSPs are resistant to the effects of intestinal proteases, they likely allow the organism to survive in the protease-rich small intestine. Although immune escape is commonly mentioned as the reason antigenic variation occurs, VSP expression changes in vivo even in the absence of an adaptive immune system suggesting the biological role of antigenic variation is more complex. The molecular mechanisms involved in antigenic variation are not known but appear to differ from those known to occur in other protozoa.  相似文献   

10.
11.
The intestinal parasite Giardia lamblia undergoes cell differentiations that entail entry into and departure from the replicative cell cycle. The pathophysiology of giardiasis depends directly upon the ability of the trophozoite form to replicate in the host upper small intestine. Thus, cell proliferation is tightly linked to disease. However, studies of cell cycle regulation in Giardia have been hampered by the inability to synchronise cultures. Here we report that Giardia isolates of the major human genotypes A and B can be synchronised using aphidicolin, a mycotoxin that reversibly inhibits replicative DNA polymerases in eukaryotic cells. Aphidicolin arrests Giardia trophozoites in the early DNA synthesis (S) phase of the cell cycle. We identified a set of cell cycle orthologues in the Giardia genome using bioinformatic analyses and showed that synchronised parasites express these genes in a cell cycle stage-specific manner. The synchronisation method also showed that during encystation, exit from the ordinary cell cycle occurs preferentially in G(2) and defines a restriction point for differentiation. Synchronisation opens up possibilities for further molecular and cell biological studies of chromosome replication, mitosis and segregation of the complex cytoskeleton in Giardia.  相似文献   

12.
13.
The intestinal protozoan parasite Giardia lamblia undergoes surface antigenic variation whereby one of a family of structurally related variant-specific surface proteins (VSPs) is replaced in a regulated process by another antigenically distinct VSP. All VSPs are type I membrane proteins that have a conserved hydrophobic sequence terminated by the invariant hydrophilic amino acids, CRGKA. Using transfected Giardia constitutively expressing HA-tagged VSPH7 and incubated with radioactive [3H]palmitate, we demonstrate that the palmitate is attached to the Cys in the conserved CRGKA tail. Surface location of mutant VSPs lacking either the CRGKA tail or its Cys is identical to that of wild-type VSPH7 but non-palmitoylated mutants fail to undergo complement-independent antibody specific cytotoxicity. In addition, membrane localization of non-palmitoylated mutant VSPH7 changes from a pattern similar to rafts to non-rafts. Palmitoyl transferases (PAT), responsible for protein palmitoylation in other organisms, often possess a cysteine-rich domain containing a conserved DHHC motif (DHHC-CRD). An open reading frame corresponding to a putative 50 kDa Giardia PAT (gPAT) containing a DHHC-CRD motif was found in the Giardia genome database. Expression of epitope-tagged gPAT using a tetracycline inducible vector localized gPAT to the plasma membrane, a pattern similar to that of VSPs. Transfection with gPAT antisense producing vectors inhibits gPAT expression and palmitoylation of VSPs in vitro confirming the function of gPAT. These results show that VSPs are palmitoylated at the cysteine within the conserved tail by gPAT and indicate an essential function of palmitoylation in control of VSP-mediated signalling and processing.  相似文献   

14.
Nuclear-cytoplasmic trafficking of proteins is a highly regulated process that modulates multiple biological processes in eukaryotic cells. In Giardia lamblia, shuttling has been described from the cytoplasm to nuclei of proteins during the biological cell cycle of the parasite. This suggests that a mechanism of nucleocytoplasmic transport is present and functional in G. lamblia. By means of computational biology analyses, we found that there are only two genes for nuclear transport in this parasite, named Importin α and Importin β. When these transporters were overexpressed, both localized close to the nuclear envelope, and no change was observed in trophozoite growth rate. However, during the encystation process, both transporters induced an increase in the number of cysts produced. Importazole and Ivermectin, two known specific inhibitors of importins, separately influenced the encysting process by inducing an arrest in the trophozoite stage that prevents the production of cysts. This effect was more noticeable when Ivermectin, an anti-parasitic drug, was used. Finally, we tested whether the enzyme arginine deiminase, which shuttles from the cytoplasm to the nuclei during encystation, was influenced by these transporters. We found that treatment with each of the inhibitors abrogates arginine deiminase nuclear translocation and favors perinuclear localization. This suggests that Importin α and Importin β are key transporters during the encystation process and are involved, at least, in the transport of arginine deiminase into the nuclei. Considering the effect produced by Ivermectin during growth and encystation, we postulate that this drug could be used to treat giardiasis.  相似文献   

15.
16.
17.
18.
The Giardia lamblia cyst wall (CW), which is required for survival outside the host and infection, is a primitive extracellular matrix. Because of the importance of the CW, we queried the Giardia Genome Project Database with the coding sequences of the only two known CW proteins, which are cysteine-rich and contain leucine-rich repeats (LRRs). We identified five new LRR-containing proteins, of which only one (CWP3) is up-regulated during encystation and incorporated into the cyst wall. Sequence comparison with CWP1 and -2 revealed conservation within the LRRs and the 44-amino-acid N-flanking region, although CWP3 is more divergent. Interestingly, all 14 cysteine residues of CWP3 are positionally conserved with CWP1 and -2. During encystation, C-terminal epitope-tagged CWP3 was transported to the wall of water-resistant cysts via the novel regulated secretory pathway in encystation-secretory vesicles (ESVs). Deletion analysis revealed that the four LRRs are each essential to target CWP3 to the ESVs and cyst wall. In a deletion of the most C-terminal region, fewer ESVs were stained in encysting cells, and there was no staining in cysts. In contrast, deletion of the 44 amino acids between the signal sequence and the LRRs or the region just C-terminal to the LRRs only decreased the number of cells with CWP3 targeting to ESVs and cyst wall by approximately 50%. Our studies indicate that virtually every portion of the CWP3 protein is needed for efficient targeting to the regulated secretory pathway and incorporation into the cyst wall. Further, these data demonstrate the power of genomics in combination with rigorous functional analyses to verify annotation.  相似文献   

19.
Encystation of Acanthamoeba leads to the formation of resilient cysts from vegetative trophozoites. This process is essential for parasite survival under unfavorable conditions such as starvation, low temperatures, and exposure to biocides. During encystation, a massive turnover of intracellular components occurs, and a large number of organelles and proteins are degraded by proteases. Previous studies with specific protease inhibitors have shown that cysteine and serine proteases are involved in encystation of Acanthamoeba, but little is known about the role of metalloproteases in this process. Here, we have biochemically characterized an M17 leucine aminopeptidase of Acanthamoeba castellanii (AcLAP) and analyzed its functional involvement in encystation of the parasite. Recombinant AcLAP shared biochemical properties such as optimal pH, requirement of divalent metal ions for activity, substrate specificity for Leu, and inhibition profile by aminopeptidase inhibitors and metal chelators with other characterized M17 family LAPs. AcLAP was highly expressed at a late stage of encystation and mainly localized in the cytoplasm of A. castellanii. Knockdown of AcLAP using small interfering RNA induced a decrease of LAP activity during encystation, a reduction of mature cyst formation, and the formation of abnormal cyst walls. In summary, these results indicate that AcLAP is a typical M17 family enzyme that plays an essential role during encystation of Acanthamoeba.  相似文献   

20.
The mature cyst of Acanthamoeba is highly resistant to various antibiotics and therapeutic agents. Cyst wall of Acanthamoeba are composed of cellulose, acid-resistant proteins, lipids, and unidentified materials. Because cellulose is one of the primary components of the inner cyst wall, cellulose synthesis is essential to the process of cyst formation in Acanthamoeba. In this study, we hypothesized the key and short-step process in synthesis of cellulose from glycogen in encysting Acanthamoeba castellanii, and confirmed it by comparing the expression pattern of enzymes involving glycogenolysis and cellulose synthesis. The genes of 3 enzymes, glycogen phosphorylase, UDP-glucose pyrophosphorylase, and cellulose synthase, which are involved in the cellulose synthesis, were expressed high at the 1st and 2nd day of encystation. However, the phosphoglucomutase that facilitates the interconversion of glucose 1-phosphate and glucose 6-phosphate expressed low during encystation. This report identified the short-cut pathway of cellulose synthesis required for construction of the cyst wall during the encystation process in Acanthamoeba. This study provides important information to understand cyst wall formation in encysting Acanthamoeba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号