首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective was to compare the timed AI pregnancy rate of Angus-cross beef cows synchronized with a 5-d CO-Synch + CIDR (a progesterone-releasing intravaginal insert) protocol and given two doses of PGF (PGF), with the first dose in conjunction with CIDR withdrawal on Day 5, and the second dose given either early or late relative to the first dose. All cows (N = 1782) at 16 locations received 100 μg of GnRH + CIDR on Day 0. Cows received 25 mg of PGF concurrent with removal of the CIDR on Day 5, and were randomly allocated within locations to receive a second PGF either early (N = 881; from 0.5 to 3.9 h) or late (N = 901; from 4.5 to 8.15 h) relative to the first PGF treatment. On Day 8 (72 h after CIDR removal), all cows were inseminated and concurrently given 100 μg of GnRH. Cows were fitted with a pressure-sensitive mount detection device (Kamar) at CIDR removal. Cows were observed twice daily through Day 7 and at the time of AI on Day 8 for estrus and Kamar status (estrus - red, partial and lost Kamar versus no estrus - white Kamar) was recorded. Accounting for location, season, AI sire, cow observed in estrus or not at or before timed AI, and treatment by cows observed in estrus interaction, timed AI pregnancy rates were greater for the late (6.45 ± 0.03 h) than the early (2.25 ± 0.05 h) interval, 57.2 vs. 52.7%, respectively (P < 0.05). In conclusion, cows that received the second PGF late after the first PGF on the day of CIDR removal in a 5 d CO-Synch + CIDR synchronization protocol had significantly higher timed AI pregnancy rates than those receiving the second PGF early after the first PGF.  相似文献   

2.
Four experiments were conducted in postpartum beef cows to evaluate the influence of reducing the interval from GnRH to PGF(2alpha) from 7 to 5d in a Select-Synch + CIDR or CO-Synch + CIDR estrous synchronization program. In Expt 1, cows (n=156) were treated with either a 7 or 5d Select-Synch + CIDR program. A second PGF(2alpha) treatment was given to all cows in all experiments at 12h after the initial PGF(2alpha) (to ensure that luteolysis occurred with the 5d program). Estrous response, interval to estrus, conception rate, and first service AI pregnancy rates were similar between treatments. In Expt 2, cows (n=223) were treated with either a 7 or 5d CO-Synch + CIDR program, with timed-AI concomitant with GnRH at 60 h after PGF(2alpha). Timed-AI pregnancy rates were similar between treatments. In Expt 3 (n=223) and 4 (n=400) cows were treated with either a 7 or 5d CO-Synch + CIDR program with timed-AI concurrent with GnRH at either 60 h (7d) or 72 h (5d) after CIDR withdrawal. Timed-AI pregnancy rates were 13.3% (P<0.05; Expt 3) and 9.1% (P<0.05; Expt 4) greater for the 5 than 7d program. In conclusion, timed-AI pregnancy rates were improved with a 5d CO-Synch + CIDR program with timed-AI at 72 h after CIDR withdrawal, compared to a 7d CO-Synch + CIDR program with timed-AI at 60 h after CIDR withdrawal.  相似文献   

3.
Pregnancy per artificial insemination (AI) was evaluated in dairy cows (Bos taurus) subjected to synchronization and resynchronization for timed AI (TAI). Cows (n = 718) received prostaglandin F (PGF) on Days –38 and –24 (Days 39 and 53 postpartum), gonadotropin-releasing hormone (GnRH) on Day –10, PGF on Day –3, and GnRH and TAI on Day 0. Between Days –10 and –3, cows received a progesterone intravaginal insert (CIDR group) or no CIDR (Control group). Between Days 14 and 23, cows received a CIDR (Resynch CIDR group) or no CIDR (Resynch control group), GnRH on Day 23, with pregnancy diagnosis on Day 30. Cows in estrus (between Days 0 and 30) were re-inseminated at detected estrus (RIDE). Nonpregnant cows received PGF on Day 30 and GnRH and TAI on Day 33. Plasma progesterone was determined to be low or high on Days –24 and –10. Pregnancy rates were evaluated 30 and 55 d after AI. The CIDR insert included in the Presynch-Ovsynch protocol did not increase overall pregnancy per AI for first service (36.1% and 33.6% for CIDR; 34.1% and 28.8% for Control) but did decrease pregnancy loss (7.0% for CIDR and 15.6% for Control). The CIDR insert increased pregnancy per AI in cows with high progesterone at the time the CIDR insert was applied. Administration of a CIDR insert between Days 14 and 23 of the estrous cycle after first service did not increase overall pregnancy per AI to second service (24.7% and 22.7% for Resynch CIDR; 28.6% and 25.3% for Resynch control). For second service, RIDE cows had lower pregnancy rates in the Resynch CIDR group than in the Resynch control group. Cows with a CL (corpus luteum) at Day 30 had higher pregnancy rates in the Resynch CIDR group than those in the Resynch control group.  相似文献   

4.
Two experiments were conducted to investigate the effects of timing of prostaglandin F2(alpha) (PGF2(alpha)) administration, controlled internal drug release device (CIDR) removal and second gonodotropin releasing hormone (GnRH) administration on the pregnancy outcome in CIDR-based synchronization protocols. In Experiment 1, suckled Angus crossbred beef cows (n = 580) were given 100 microg of GnRH+a CIDR on Day 0. Cows in Group 1 (modified Ovsynch-P) received 25 mg of dinoprost (PGF2(alpha)) and CIDR device removal on Day 8 (AM), 100 microg of GnRH 36 h later on Day 9 (p.m.), and fixed-time AI (FTAI) 16 h later on Day 10 (47.5+/-1.1 h after PGF2(alpha)). Cows in Group 2 (Ovsynch-P) received 25mg of PGF2(alpha) and CIDR device removal on Day 7 (p.m.), 100 microg of GnRH 48 h later on Day 9 and FTAI 16 h later on Day 10 (66.6+/-1.2 h after PGF2(alpha)). Pregnancy rates were 56.5% (170/301) for Group 1 and 55.6% (155/279) for Group 2, respectively (P = 0.47). In Experiment 2, beef cows (n=734) were synchronized with 100 microg of GnRH+CIDR on Day 0, 25 mg of PGF2(alpha) and CIDR device removal on Day 7 and either 100 microg of GnRH 48 h later on Day 9 (Ovsynch-P) and FTAI 16 h later on Day 10 (64.9+/-3.3 h from PGF2(alpha)) or 100 microg of GnRH on Day 10 (CO-Synch-P) at the time of AI (63.2+/-4.2 h from PGF2(alpha)). Pregnancy rates were 48.8% (180/369) for Ovsynch-P and 44.7% (163/365) for CO-synch-P groups, respectively (P = 0.11). In both experiments, there was a locationxtreatment interaction (P<0.05); pregnancy rates between locations were different (P < 0.05) in the Ovsynch-P group. In conclusion, in a CIDR-based Ovsynch synchronization protocol, delaying administration of prostaglandin and CIDR removal by 12 h, or timing of the second GnRH by 16 h, did not affect pregnancy rates to FTAI. Therefore, there may be an opportunity to make changes in synchronization protocols with out adversely affecting FTAI pregnancy rates.  相似文献   

5.
The present study determined whether a 5-d progesterone-based CO-Synch protocol with a single dose of prostaglandin F (PGF) at progesterone withdrawal on Day 5, would yield a timed AI pregnancy rate similar to two doses of PGF given 6 h apart on Day 5. Angus cross beef heifers (N = 562) at six locations were used. All heifers received 100 µg of gonadorelin hydrochloride (GnRH) and a controlled internal drug release (CIDR) insert on Day 0. Within farm, heifers were randomly allocated to receive one dose of 25 mg dinoprost (PGF) at CIDR removal on Day 5 (1 PGF; N = 264), or two doses of 25 mg PGF, with the first dose given on Day 5 at CIDR removal, and the second dose 6 h later (2 PGF; N = 298). Most heifers (N = 415) received a heat detector patch at CIDR removal. After CIDR removal, heifers were observed twice daily through Day 7 for estrus and heat detector aid status was recorded. On Day 8, heifers were given 100 µg of GnRH, heat detector aid status was recorded, and heifers were inseminated approximately 72 h after CIDR removal. Accounting for significant variables such as location (P < 0.01), heifers in estrus at or prior to AI (P < 0.001), and a treatment by location interaction (P < 0.01), two doses of PGF on Day 5 tended to have higher pregnancy rates to timed AI compared to those that received one dose of PGF (P = 0.06). In conclusion, heifers given two doses of PGF at CIDR removal on Day 5, in a 5-d CIDR-CO-Synch protocol, tended to have a higher pregnancy rate than those that received only one dose of PGF.  相似文献   

6.
The objectives were to evaluate the pattern of re-insemination, pregnancy outcomes to re-insemination in estrus and at fixed time, and economic outcomes of lactating Holstein cows submitted to three resynchronization protocols. Cows were enrolled in the Experiment at 32 ± 3 d after pre-enrollment Artificial Insemination (AI), 7 d before pregnancy diagnosis, and randomly assigned to three resynchronization protocols. All cows diagnosed not pregnant at 39 ± 3 d after pre-enrollment AI were submitted to the Cosynch72 (Day 0 GnRH, Day 7 prostaglandin F, and Day 10 GnRH and fixed time AI). Cows assigned to the control treatment received no further treatment, cows assigned to the GGPG treatment received a GnRH injection on Day −7, and cows assigned to the CIDR treatment received a controlled internal drug release (CIDR) insert containing 1.38 g of progesterone from Days 0-7. Cows observed in estrus were re-inseminated on the same day. Pregnancy was diagnosed at 39 ± 3 and 67 ± 3 d after re-insemination. Costs of the resynchronization protocols were calculated for individual cows enrolled in the study and pregnancies generated were given a value of $275. The GGPG treatment resulted in the slowest (P ≤ 0.06) rate of re-insemination. Overall pregnancy per AI (P/AI) at 39 ± 3 (P = 0.50) and 67 ± 3 (P = 0.49) d after re-insemination were not affected by treatment. Although cost of the control protocol was (P < 0.01) the smallest, return per cow resynchronized was (P < 0.01) greater for GGPG and CIDR protocols. We concluded that presynchronizing the estrous cycle of cows with GnRH or treating cows with a CIDR insert during resynchronization altered the pattern of re-insemination and improved the economic return of resynchronized cows.  相似文献   

7.
The objective of this experiment was to evaluate the biostimulatory effect of bull exposure, with or without the deposition of seminal plasma, on expression of estrus and pregnancy rate to AI in cattle. Beef heifers (n=86) and cows (n=193) were allocated to one of three treatments: (1) no bull exposure (CON; n=95), (2) exposure to a bull with a surgically-deviated penis for 21 d prior to AI (DB; n=88), or (3) exposure to a vasectomized bull for 21 d prior to AI (VB; n=96). The DB treatment provided the physical presence of a bull but prevented intromission, whereas the VB treatment allowed for intromission and deposition of seminal plasma but not spermatozoa. The estrous cycles of all females were synchronized using the Select Synch+CIDR protocol (GnRH+CIDR-7d-CIDR removal+PGF(2α), detection of estrus+AI 12h later for 84 h-clean-up TAI+GnRH). Pregnancy was detected via transrectal ultrasonography on d 35 post-AI. At the onset of the experiment, 75.7% of heifers and 86.1% of cows were estrous cycling. The percentages of females that displayed estrus were similar (P>0.05) among treatments (71.4%, 76.8%, and 74.4% for CON, DB, and VB, respectively). Pregnancy rates tended to be greater (P=0.06) in females in the DB treatment (60.5%) compared to females in the VB treatment (42.2%), with the control group intermediate (49.5%). In conclusion, biostimulation did not affect the expression of estrus but females exposed to the DB treatment tended to have an increased pregnancy rate.  相似文献   

8.
The objectives of this experiment were to compare estrous synchronization responses and AI pregnancy rates of beef heifers using protocols that included either CIDR or MGA as the progestin source. The hypotheses tested were that: (1) estrous synchronization responses after (a) progestin removal, and (b) PGF(2alpha); and, (2) AI pregnancy rates, do not differ between heifers synchronized with either progestin source. At the start of the experiment (Day 0) in both years, heifers were assigned randomly to receive, MGA supplement for 14 days (MGA-treated; n=79) or CIDR for 14 days (CIDR-treated; n=77). On Day 14 progestin was removed and heifers were observed for estrus up to and after PGF(2alpha) on Days 31 and 33 for CIDR-treated and MGA-treated heifers, respectively. Heifers that exhibited estrus within 60h after PGF(2alpha) were inseminated by AI 12h later; the remaining heifers were inseminated at 72h after PGF(2alpha) and given GnRH (100mug). More (P<0.05) CIDR-treated heifers exhibited estrus within 120h after progestin removal than MGA-treated heifers. Intervals to estrus after progestin removal were shorter (P<0.05) for CIDR-treated heifers than MGA-treated heifers. More (P<0.05) CIDR-treated heifers exhibited estrus and were inseminated within 60h after PGF(2alpha) than MGA-treated heifers. Pregnancy rates did not differ (P>0.10) between MGA-treated (66%) and CIDR-treated (62%) heifers. In conclusion, the use of CIDR as a progestin source in a 14-day progestin, PGF(2alpha), and timed AI and GnRH estrous synchronization protocol was as effective as the use of MGA to synchronize estrus and generate AI pregnancies in beef heifers.  相似文献   

9.
Pregnancy rates were compared in lactating dairy cows (n = 1083) assigned to protocols for resynchronization of ovulation based on stages of the estrous cycle, or presence of ovarian cysts or anestrus. Cows were detected not pregnant by ultrasonography 30 d after a previous AI (study day 0) and classified as diestrus, metestrus, proestrus, with ovarian cysts or anestrus. Cows in diestrus (January-May) were assigned to either Ovsynch (GnRH day 0, PGF2alpha day 7, GnRH day 9, and timed-AI [TAI] 16 h later; n = 96), or Quicksynch (PGF2alpha day 0, estradiol cypionate [ECP] day 1, AI at detected estrus [AIDE] on day 2, or TAI on day 3; n = 96). Cows in diestrus (June-December) were assigned to either Ovsynch (n = 156) or Modified Quicksynch (PGF2alpha day 0, ECP day 1, AIDE days 2 and 3, and to Ovsynch on day 4 if not detected in estrus; n = 142). Cows in metestrus were assigned either to Ovsynch (n = 68), Heatsynch (GnRH day 0, PGF2alpha day 7, ECP day 8, AIDE day 9, or TAI day 10; n = 62), or GnRH + Ovsynch (GnRH on day 0, followed by Ovsynch on day 8; n = 64). Cows in proestrus, with ovarian cysts, or anestrus were assigned to either Ovsynch (proestrus n = 89, ovarian cysts n = 97, anestrus n = 8) or GnRH + Ovsynch (proestrus n = 87, ovarian cysts n = 109, anestrus n = 9). Pregnancy rate was evaluated 30, 55 and 90 d after resynchronized AI. For cows in diestrus (January-May), pregnancy rates were higher for Ovsynch (35.9, 29.2 and 26.0%) than for Quicksynch (21.7, 16.7 and 15.6%). For cows in diestrus (June-December), pregnancy rates were similar for Ovsynch (34.4, 24.0 and 23.6%) and Modified Quicksynch (27.1, 26.2 and 21.6%). For cows in metestrus, pregnancy rates were higher for GnRH + Ovsynch (33.3, 24.5 and 20.3%) than for Heatsynch (20.3, 12.9 and 9.8%). For cows with ovarian cysts, pregnancy rates were higher for GnRH + Ovsynch (30.3, 26.6 and 22.9%) than for Ovsynch (20.2, 18.5 and 14.7%). Assignment to resynchronization protocols based on the stages of the estrous cycle, or presence of ovarian cysts improved pregnancy rates.  相似文献   

10.
《Theriogenology》2016,86(9):1555-1561
A pilot experiment was designed to test the hypothesis that administration of PGF before progestin treatment would allow for a reduced duration of progestin treatment in a long-term progestin-based estrus synchronization protocol. A modified presynchronization treatment was compared with a standard long-term controlled internal drug release (CIDR) treatment, and treatments were compared on the basis of ovarian follicular dynamics, estrous response rate, synchrony of estrus expression, and pregnancy rates resulting from timed artificial insemination (TAI) in postpartum beef cows. Estrous was synchronized for 85 cows, with cows assigned to one of two treatments based on age, days postpartum, and body condition score. Cows assigned to the 14-day CIDR-PG protocol received a CIDR insert (1.38 g progesterone) on Day 0, CIDR removal on Day 14, and administration of PGF (25 mg im) on Day 30. Cows assigned to the 9-day CIDR-PG protocol received PGF concurrent with CIDR insertion on Day 5, PGF concurrent with CIDR removal on Day 14, and administration of PGF on Day 30. In both treatments, split-time AI was performed based on estrous response. At 72 hours after PGF (Day 33), cows having expressed estrus received TAI; cows that failed to express estrus by 72 hours received TAI 24 hours later (96 hours after PGF on Day 34), with GnRH (100 μg im) administered to nonestrous cows. Estrus-detection transmitters were used from CIDR removal until AI to determine onset time of estrus expression both after CIDR removal and after PGF. Ovarian ultrasonography was performed at CIDR removal on Day 14, PGF on Day 30, and AI on Days 33 or 34. At CIDR removal on Day 14, diameter of the largest follicle present on the ovary was similar between treatments. The proportion of cows expressing estrus after CIDR removal tended to be higher (P = 0.09) among cows assigned to the 9-day CIDR-PG treatment (93%; 40 of 43) than among cows assigned to the 14-day CIDR-PG treatment (81%; 34 of 42). After PGF, a significantly higher proportion (P = 0.02) of cows expressed estrus after synchronization with the 9-day CIDR-PG treatment (91%; 39 of 43) than the 14-day CIDR-PG treatment (69%; 29 of 42). Consequently, pregnancy rate to TAI tended to be increased (P = 0.09) among the 9-day CIDR-PG treatment (76.7%; 33 of 43) compared with the 14-day CIDR-PG treatment (59.5%; 25 of 42). In summary, a long-term CIDR-based estrous synchronization protocol for postpartum beef cows was enhanced through administration of PGF at CIDR insertion and CIDR removal.  相似文献   

11.
The objective was to compare pregnancy rates to resynchronization and timed AI (TAI) protocols in lactating dairy cows that received GnRH at 23 d and were diagnosed not pregnant at 30 d after the pre-enrollment AI. Nonpregnant cows (624) at ultrasonography on day 30 (study day 0) were classified as diestrus (74.8%), metestrus (5.6%) and without a CL (19.5%). Cows in diestrus were assigned either to the GnRH group (PGF2alpha on day 0, GnRH on day 2 and TAI 16 h later, n = 238) or the estradiol cypionate (ECP) group (PGF2alpha on day 0, ECP on day 1, and TAI 36 h later, n = 229). Cows in metestrus were assigned to the Modified Heatsynch Group (GnRH on day 0, PGF(2alpha) on day 7, ECP on day 8 and TAI on day 9, n = 35). Cows without a CL (n = 122) were classified either as proestrus (10.6%), ovarian cysts (7.5%) or anestrus (1.4%), and assigned to factorial treatments (i.e., use of GnRH versus CIDR) to either the GnRH group (GnRH on day 0, PGF2alpha on day 7, GnRH on day 9 and TAI 16 h later, n = 28), the CIDR group (CIDR insert from days 0 to 7, PGF2alpha on day 7, GnRH on day 9 and TAI 16 h later, n = 34), the GnRH + CIDR group (GnRH on day 0, CIDR insert from days 0 to 7, PGF2alpha on day 7, GnRH on day 9 and TAI 16h later, n = 32), and the control group (PGF2alpha on day 7, GnRH on day 9 and TAI 16 h later, n = 28). For cows without a CL, plasma P4 concentrations were determined on days 0, 7, 10 and 17 and ovarian structures determined on days 0, 7 and 17. Pregnancy rates were evaluated at 30, 55 and 90 d after the resynchronized AI. For cows in diestrus, there were no differences in pregnancy rates on days 30, 55 and 90 for cows in the GnRH (27.5, 26.5 and 24.2%) or ECP (29.1, 25.5 and 24.1%) groups. In addition, there were no differences in pregnancy losses between days 30 and 55 and 55 and 90 between the GnRH (7.0 and 8.6%) and ECP (9.8 and 5.4%) groups. For cows without a CL, GnRH on day 0 increased the proportion of cows with a CL on days 7 and 17 and plasma P4 concentration on day 17 in cows with ovarian cysts but not for cows in proestrus. The CIDR insert increased pregnancy rate in cows with ovarian cysts but reduced pregnancy rate for cows in proestrus.  相似文献   

12.
The objective was to determine whether timed artificial insemination (TAI) 56 h after removal of a Controlled Internal Drug Release (CIDR, 1.38 g of progesterone) insert would improve AI pregnancy rate in beef heifers compared to TAI 72 h after CIDR insert removal in a 5-days CO-Synch + CIDR protocol. Angus cross beef heifers (n = 1098) at nine locations [WA (5 locations; n = 634), ID (2 locations; n = 211), VA (one location; n = 193) and WY (one location; n = 60)] were included in this study. All heifers were given a body condition score (BCS; 1-emaciated; 9-obese), and received a CIDR insert and 100 μg of gonadorelin hydrochloride (GnRH) on Day 0. The CIDR insert was removed and two doses of 25 mg of dinoprost (PGF) were given, first dose at CIDR insert removal and second dose 6 h later, on Day 5. A subset of heifers (n = 629) received an estrus detector aid at CIDR removal. After CIDR removal, heifers were observed thrice daily for estrus and estrus detector aid status until they were inseminated. Within farm, heifers were randomly allocated to two groups and were inseminated either at 56 h (n = 554) or at 72 h (n = 544) after CIDR removal. All heifers were given 100 μg of GnRH at AI. Insemination 56 h after CIDR insert removal improved AI pregnancy rate compared to insemination 72 h (66.2 vs. 55.9%; P < 0.001; 1 - β = 0.94). Locations, BCS categories (≤ 6 vs. > 6) and location by treatment and BCS by treatment interactions did not influence AI pregnancy rate (P > 0.1). The AI pregnancy rates for heifers with BCS ≤ 6 and > 6 were 61.8 and 60.1%, respectively (P > 0.1). The AI pregnancy rates among locations varied from 54.9 to 69.2% (P > 0.1). The AI pregnancy rate for heifers observed in estrus at or before AI was not different compared to heifers not observed in estrus [(65.4% (302/462) vs. 52.7% (88/167); P > 0.05)]. In conclusion, heifers inseminated 56 h after CIDR insert removal in a 5-days CO-Synch + CIDR protocol had, on average, 10.3% higher AI pregnancy rate compared to heifers inseminated 72 h after CIDR insert removal.  相似文献   

13.
Anestrous and lactating Bos taurus by Bos indicus crossbred cows with minimum body condition were studied to determine the efficacy of GnRH+PGF 2alpha combinations for induction of estrus and/or ovulation on pregnancy rate during the months of the year when temperatures are greater. On day 0 (start of treatment), cows were assigned randomly to either treatment or control groups. Treated cows (n = 74) received i.m. 200 microg of GnRH on day 0 and 150 microg of PGF 2alpha 7 days later (day 7). On day 7, treated cows were equally distributed to each of three protocols: (1) Select Synch (n = 25), artificial insemination (AI) 12 h after exhibiting estrus from day 7 (PGF 2alpha injection) until day 12; (2) Ovsynch (n = 24), 200 microg of GnRH at 48 h after PGF 2alpha (day 9) + timed-AI (TAI) 16-20 h later; (3) CO-Synch (n = 25), 200 microg of GnRH + TAI at 48 h after PGF 2alpha (day 9). Control cows (n = 25) received no treatment + AI 12 h after exhibiting estrus from days 0 to 12. Detection of estrus was performed daily during the early morning and evening hours from days 0 to 7 in all the cows, and from days 7 to 12 in the cows treated with Select Synch and in the control group, with the aid of a sterilized bull. Palpation per rectum and transrectal ultrasonography were used on days -30, -20, -10 and 0 to confirm anestrus (absence of CL and no signs of estrus at each evaluation) but with ovarian follicles > or = 10 mm on day 0. Pregnancy rate was 0% for Select Synch, 21% for Ovsynch and 28% for CO-Synch (P < 0.05). In conclusion, the Ovsynch and CO-Synch protocols resulted in greater pregnancy rates compared with the Select Synch protocol in Bos taurus/Bos indicus cows with minimum body condition that were anestrous and lactating during the summer months in a tropical environment.  相似文献   

14.
The objectives of this study were to evaluate the effects of flunixin meglumine (FM), an inhibitor of PGF(2alpha) synthesis, and insertion of an intravaginal progesterone-releasing device (CIDR), on pregnancy rates in beef cattle embryo transfer (ET) recipients, and to examine the effect of a CIDR after embryo transfer on the synchrony of the return to estrus in non-pregnant recipients. Cows (n=622) and heifers (n=90) at three locations were assigned randomly to one of four groups in a 2x2 factorial arrangement of treatments with FM administration (500 mg i.m.) 2-12 min prior to ET, and insertion of a CIDR (1.38 g progesterone) immediately following ET as main effects. Fresh or frozen embryos (Stage=4 or 5; Grade=1 or 2) were transferred on Days 6-9 of the estrous cycle and CIDR devices were removed 13 days after ET. Recipients at Location 2 only were observed for signs of return to estrus. Recipients that returned to estrus at Location 2 were either bred by AI or received an embryo 7 days after estrus. Following the initial ET, there was an FMxlocation interaction on pregnancy rate (P<0.01; Location 1, 89% versus 57%; Location 2, 69% versus 64%; Location 3, 64% versus 67% for FM versus no FM, respectively). Pregnancy rates of embryo recipients were not affected by CIDR administration (P>0.05; 65% with CIDR, 70% without CIDR), however, the timing of the return to estrus was more synchronous (P<0.01) for recipients given a CIDR. Pregnancy rate of recipients bred following a return to estrus did not differ between cows receiving or not receiving a CIDR for resynchronization (P>0.13). Effects of FM on pregnancy rate were location dependent and CIDR insertion at ET improved synchrony of the return to estrus.  相似文献   

15.
Xu ZZ  Burton LJ 《Theriogenology》1998,50(6):905-915
In a previous study we showed that estrus synchronization with 2 treatments of PGF2 alpha 13 d apart reduced conception rate at the synchronized estrus and that this reduction occurred mainly in cows in the early luteal phase at the second PGF2 alpha treatment. The objective of the present study was to determine the efficacy of a synchronization regimen in which PGF2 alpha was administered during the mid- to late-luteal phase to cows that had previously been synchronized with progesterone. Spring-calving cows from 6 dairy herds were used in this study. On Day -32 (Day 1 = the start of the breeding season), cows that had calved 2 or more weeks ago were randomly assigned to a synchronization (S, n = 732) or control (C, n = 731) group. Cows in Group S were treated with an intravaginal progesterone device (CIDR) for 12 d from Day -32 to Day -20, while those in Group C were left untreated. Similar percentages of cows in Group S (80.6%) and C (82.9%) had cycled by Day -7. The CIDR treatment synchronized the onset of estrus, resulting in 92.9% of cows in estrus being detected within 7 d after CIDR removal. Cows in Group S that had cycled by Day -7 were treated with PGF2 alpha (25 mg, i.m., Lutalyse) on Day -2. Cows in both groups that were anestrous on Day -7 were treated with a combination of progesterone and estradiol benzoate (EB) to induce estrus and ovulation (CIDR and a 10 mg EB capsule on Day -7, CIDR removal on Day -2, and injection of 1 mg EB 48 h after CIDR removal). The PGF2 alpha treatment synchronized the onset of estrus in 87.5% of the cows. Group S and C cows had similar conception rates to first (61.0 vs 58.3%) and second (58.4 vs 60.9%) AI; similar pregnancy rates over the AI period (82.8 vs 79.2%) and over the whole breeding season (91.9 vs 90.6%); and required a similar number of services per pregnancy to AI (1.7 vs 1.8). The interval from the start of the breeding season to conception for cows conceiving to AI or to combined AI and natural mating was shorter (P < 0.001) by 5.7 and 6.2 d, respectively, for the Group S cows. It is concluded that the treatment regimen tested in the present study achieved satisfactory estrus synchronization, had no detrimental effect on fertility at the synchronized estrus, and shortened the interval from start of the breeding season to conception.  相似文献   

16.
Two experiments evaluated long-term controlled internal drug release (CIDR) insert-based protocols to synchronize estrus and compare differences in their potential ability to facilitate fixed-time artificial insemination (FTAI) in beef heifers. In Experiment 1 estrous cycling heifers (n = 85) were assigned to one of two treatments by age and body weight (BW). Heifers with T1 received a CIDR from days 0 to 14, gonadotropin releasing hormone (GnRH) on day 23, and prostaglandin F (PG) on day 30. Heifers with T2 received a CIDR from days 2 to 16, GnRH on day 23, and PG on day 30. Ovaries were evaluated by ultrasonography on days 23 and 25 to determine ovulatory response to GnRH. In Experiment 2 heifers (n = 353) were assigned within reproductive tract scores by age and BW to one of four treatments. Heifers in T1 and T2 received the same treatments described in Experiment 1. Heifers in T3 and T4 received the same treatments as T1 and T2, respectively, minus the addition of GnRH. In Experiments 1 and 2, heifers were fitted with HeatWatch transmitters for estrous detection and AI was performed 12 h after estrus. In Experiment 1 heifers assigned to T1 had larger dominant follicles at GnRH compared to T2 (P < 0.01) but response to GnRH, estrous response after PG, mean interval to estrus, and variance for interval to estrus after PG did not differ (P > 0.10). AI conception and final pregnancy rate were similar (P > 0.50). In Experiment 2 estrous response after PG did not differ (P > 0.70). Differences in mean interval to estrus and variance for interval to estrus (P < 0.05) differed based on the three-way interaction of treatment length, GnRH, and estrous cyclicity status. AI conception and final pregnancy rates were similar (P > 0.10). In summary, the greater estrous response following PG and resulting AI conception and final pregnancy rates reported for heifers assigned to the two treatments in Experiment 1 and among the four treatments in Experiment 2 suggest that each of these long-term CIDR-based protocols was effective in synchronizing estrus in prepubertal and estrous cycling beef heifers. However, the three-way interaction involving treatment length, GnRH, and estrous cyclicity status in Experiment 2 clearly suggests that further evaluation of long-term CIDR-based protocols is required with and without the addition of GnRH and on the basis of estrous cyclicity status to determine the efficacy of these protocols for use in facilitating FTAI.  相似文献   

17.
The objectives were (1) to determine the effects of gonadorelin hydrochloride (GnRH) injection at controlled internal drug release (CIDR) insertion on Day 0 and the number of PGF2α doses at CIDR removal on Day 5 in a 5-day CO-Synch + CIDR program on pregnancy rate (PR) to artificial insemination (AI) in heifers; (2) to examine how the effect of systemic concentration of progesterone and size of follicles influenced treatment outcome. Angus cross beef heifers (n = 1018) at eight locations and Holstein dairy heifers (n = 1137) at 15 locations were included in this study. On Day 0, heifers were body condition scored (BCS), and received a CIDR. Within farms, heifers were randomly divided into two groups: at the time of CIDR insertion, the GnRH group received 100 μg of GnRH and No-GnRH group received none. On Day 5, all heifers received 25 mg of PGF2α at the time of CIDR insert removal. The GnRH and No-GnRH groups were further divided into 1PGF and 2PGF groups. The heifers in 2PGF group received a second dose of PGF2α 6 hours after the administration of the first dose. Beef heifers underwent AI at 56 hours and dairy heifers at 72 hours after CIDR removal and received 100 μg of GnRH at the time of AI. Pregnancy was determined approximately at 35 and/or 70 days after AI. Controlling for herd effect (P < 0.06), the treatments had significant effect on AI pregnancy in beef heifers (P = 0.03). The AI-PRs were 50.3%, 50.2%, 59.7%, and 58.3% for No-GnRH + PGF + GnRH, No-GnRH + 2PGF + GnRH, GnRH + PGF + GnRH, and GnRH + 2PGF + GnRH groups, respectively. The AI-PRs were ranged from 50% to 62.4% between herds. Controlling for herd effects (P < 0.01) and for BCS (P < 0.05), the AI pregnancy was not different among the treatment groups in dairy heifers (P > 0.05). The AI-PRs were 51.2%, 51.9%, 53.9%, and 54.5% for No-GnRH + PGF + GnRH, No-GnRH + 2PGF + GnRH, GnRH + PGF + GnRH, and GnRH + 2PGF + GnRH groups, respectively. The AI-PR varied among locations from 48.3% to 75.0%. The AI-PR was 43.5%, 50.4%, and 64.2% for 2.5 or less, 2.75 to 3.5, and greater than 3.5 BCS categories. Numerically higher AI-PRs were observed in beef and dairy heifers that exhibited high progesterone concentrations at the time of CIDR insertion (>1 ng/mL, with a CL). In addition, numerically higher AI-PRs were also observed in heifers receiving CIDR + GnRH with both high and low progesterone concentration (<1 ng/mL) initially compared with heifers receiving a CIDR only with low progesterone. In dairy heifers, there were no differences in the pregnancy loss between 35 and 70 days post-AI among the treatment groups (P > 0.1). In conclusion, GnRH administration at the time of CIDR insertion is advantageous in beef heifers, but not in dairy heifers, to improve AI-PR in the 5-day CIDR + CO-Synch protocol. In addition, in this study, both dairy heifers that received either one or two PGF2α doses at CIDR removal resulted in similar AI-PR in this study regardless of whether they received GnRH at CIDR insertion.  相似文献   

18.
The objective was to determine the effect of presynchronization with GnRH 7 d prior to the initiation of resynchronization with CO-Synch on pregnancy/AI (P/AI) of resynchronization in lactating dairy cows, and the effect of GnRH on P/AI from previous breeding. All parity Holstein cows (n = 3287) from four dairy farms were enrolled. Cows not detected in estrus by 28 ± 3 d (Day -7) after a previous breeding were assigned to receive either GnRH (100 μg, im; n = 1636) or no GnRH (Control; n = 1651). Cows not detected in estrus during the 7 d after GnRH underwent pregnancy diagnosis (35 ± 3 d after previous breeding, Day 0); non-pregnant cows (n = 1232) in the Control (n = 645) and GnRH (n = 587) groups were resynchronized with a CO-Synch protocol. Briefly, cows received 100 μg GnRH on Day 0, 25 mg PGF on Day 7, and 72 h later (Day 10) were given 100 μg GnRH and concurrently inseminated. Serum progesterone concentrations (n = 55 cows) were elevated in 47.3, 70.9, and 74.5% of cows on Days -7, 0, and 7, respectively. The proportion of cows with high progesterone concentrations on Day -7 and Day 0 were 44.1% and 88.2% (P < 0.003), and 55.2% and 33.2% (P > 0.1), for GnRH and Control groups, respectively. Accounting for significant variables such as locations (P < 0.0001) and parity categories (P < 0.05), the P/AI (35 ± 3 d after AI) for resynchronization was not different between GnRH and Control groups [26.7% (95% CI: 23.2, 30.5; (157/587) vs 28.4% (95% CI: 25.0, 31.9; (183/645); P > 0.1]. There were no significant location by treatment or parity by treatment interactions. Accounting for significant variables such as location (P < 0.0001) and parity categories (P < 0.001), the P/AI was not different between GnRH and Control groups for the previous service [60.2%; 95% CI: 57.9, 62.6; (986/1636) vs 59.1%; 95% CI: 56.7, 61.5; (976/1651); P > 0.1)]. There were no significant location by treatment or parity by treatment interactions. In conclusion, more cows presynchronized with GnRH 7 d prior to resynchronization with CO-Synch had elevated progesterone concentrations at initiation of resynchronization than those not presynchronized. The GnRH treatment 7 d prior to resynchronization with CO-Synch, when given 28 ± 3 d after a previous breeding, did not improve P/AI in lactating dairy cows; furthermore, compared to the control, it did not significantly affect pregnancy rate from the previous breeding.  相似文献   

19.
The objective was to compare pregnancy rates following fixed-time AI (FTAI) in beef cattle given a new or previously used CIDR insert and injections of estradiol, with or without progesterone, to synchronize follicular wave emergence. In Experiment 1, heifers (n=616) received a new or once-used CIDR insert for 9 days and were given 1mg estradiol cypionate (ECP), with or without 100 mg of a commercial progesterone preparation (CP4), at CIDR insertion. Heifers were treated with PGF at CIDR removal and 0.5 mg ECP i.m. 24h later, with FTAI 55 to 60 h after CIDR removal. Pregnancy rate was not affected by either the number of CIDR uses (P=0.59; 48.3% versus 46.2% for new versus once-used CIDRs, respectively) or the addition of progesterone (P=0.42; 45.6% versus 48.8% for ECP+CP4 and ECP, respectively). In Experiment 2 (replicated at two locations), heifers (n=56) and lactating beef cows (n=307) received a once- or twice-used CIDR and an i.m. injection of 1mg estradiol benzoate (EB), with or without 100 mg progesterone, at CIDR insertion. Cattle received PGF in the ischiorectal fossa at CIDR removal (Day 7) and 1mg EB i.m. 24h later, with FTAI 52 to 56 h after CIDR removal. Pregnancy rate was affected by location (P<0.002; 46.0% versus 61.1% for Locations A and B, respectively), parity (P<0.04; 67.9% versus 53.1% in heifers and cows, respectively), and numbers of times the CIDR had been used (P<0.03; 62.4% versus 48.4% for once- and twice-used CIDRs, respectively). However, the addition of progesterone to the injection of EB at CIDR insertion did not affect pregnancy rate (P=0.6). In Experiment 3, heifers (n=187) received one new, one once-used, one twice-used or two twice-used CIDRs for 7 days and 2 mg EB plus 50 mg of CP4 at the time of CIDR insertion. Heifers were treated with PGF at CIDR removal and 1mg EB i.m. 24 h later, with FTAI 52-56 h after CIDR removal. Pregnancy rate was not affected by treatments (P=0.28, 57.5, 63.8, 47.9, 47.9% for one new, one once-used, one twice-used, or two twice-used CIDRs, respectively). In summary, pregnancy rate to FTAI did not differ between cattle synchronized with a new or once-used CIDR, but pregnancy rate was lower in cattle synchronized with a twice-used CIDR; however, the insertion of two twice-used CIDRs did not affect pregnancy rates. The addition of an injection of progesterone to the estradiol treatment at CIDR insertion did not enhance pregnancy rate to FTAI.  相似文献   

20.
The objective of this study was to compare the conception rate for fixed-timed artificial insemination (FTAI) and observed heat artificial insemination (HAI) prior to the scheduled FTAI in Ovsynch and Heatsynch synchronization protocols. In Experiment 1, lactating dairy cows (n=535) received two set-up injections of 25mg prostaglandin F(2alpha) (PGF(2alpha)) i.m., 14 days apart starting at 36+/-3 days in milk (DIM). Cows were blocked by parity and were randomly allocated to either Ovsynch or Heatsynch groups. All cows received 100 microg of GnRH i.m. 14 days after the second set-up injection of PGF(2alpha), followed by a third injection of 25mg PGF(2alpha) i.m., 7 days later. In the Ovsynch group, HAI cows (n=29) were bred on standing estrus after the third PGF(2alpha) before the scheduled second GnRH, whereas FTAI cows (n=218) that were not observed in estrus, received a second injection of 100 microg of GnRH i.m., 48 h after the third PGF(2alpha) and received TAI 8 h after the second GnRH. In the Heatsynch group, all cows (n=288) received 0.5 mg of estradiol cypionate (ECP) 24 h after third PGF(2alpha) and HAI cows (n=172) were bred on standing estrus and FTAI cows (n=116) that were not observed in estrus, received TAI 72 h after the third PGF(2alpha). In Experiment 2, repeat breeder cows (n=186) were randomly assigned to either Ovsynch or Heatsynch groups. The FTAI and HAI cows were inseminated similar to Experiment 1. All cows were observed for estrus three times daily. The associations with the conception rate were modeled with logistic regression separately for Experiments 1 and 2. Of all the variables included in the model in Experiment 1, type of AI (HAI versus FTAI, P=0.0003) and parity (primiparous versus multiparous, P=0.05) influenced the first service conception rate. Over-all conception rate and first service conception rate for HAI cows were higher compared to FTAI cows (33.8% versus 21.3%, and 35.3% versus 21.0%; P=0.001). In the Heatsynch group, cows that received HAI had significantly higher over-all conception rate and first service conception rate compared to FTAI (35.2% versus 17.3% and 36.0% versus 15.5%; P=0.0001). The conception rates in repeat breeder cows for HAI and FTAI (30.1% versus 22.3%) were not different (P>0.1). In conclusion, it was recommended to include AI at observed estrus and fixed-time AI for cows not observed in estrus in order to improve the conception rate in synchronization protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号