首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic triad. Three KASes with different substrate specificities participate in synthesis of the C(16) and C(18) products of prokaryotic FAS. By comparison, mtKAS carries out all elongation reactions in the mitochondria. We present the X-ray crystal structures of the Cys-His-His-containing human mtKAS and its hexanoyl complex plus the hexanoyl complex of the plant mtKAS from Arabidopsis thaliana. The structures explain (1) the bimodal (C(6) and C(10)-C(12)) substrate preferences leading to the C(8) lipoic acid precursor and long chains for the membranes, respectively, and (2) the low cerulenin sensitivity of the human enzyme; and (3) reveal two different potential acyl-binding-pocket extensions. Rearrangements taking place in the active site, including subtle changes in the water network, indicate a change in cooperativity of the active-site histidines upon primer binding.  相似文献   

2.
A beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III; short-chain condensing enzyme) has been partly purified from pea leaves. The enzyme, which had acetyl-CoA:ACP acyltransferase (ACAT) activity, was resolved from a second, specific, ACAT protein. The KAS III enzyme had a derived molecular mass of 42 kDa (from its cDNA sequence) and operated as a dimer. Its enzymological characteristics were similar to those of two other plant KAS III enzymes except for its inhibition by thiolactomycin. A derivative of thiolactomycin containing a longer (C8 saturated) hydrophobic side-chain (compound 332) was a more effective inhibitor of pea KAS III and showed competitive inhibition towards malonyl-ACP whereas thiolactomycin showed uncompetitive characteristics at high concentrations. This difference may be due to the better fit of compound 332 into a hydrophobic pocket at the active site. A full-length cDNA for the pea KAS III was isolated. This was expressed in Escherichia coli as a fusion protein with glutathione S-transferase in order to facilitate subsequent purification. Demonstrated activity in preparations from E. coli confirmed that the cDNA encoded a KAS III enzyme. Furthermore, the expressed KAS III had ACAT activity, showing that the latter was inherent. The derived amino acid sequence of the pea cDNA showed 81-87% similarity to that for other plant dicotyledon KAS IIIs, somewhat less for Allium porrum (leek, 71%) and for Porphyra spp. (62%), Synechocystis spp. (65%) and various bacteria (42-65%). The pea KAS III exhibited four areas of homology, three of which were around the active-site Cys(123), His(323) and Asn(353). In addition, a stretch of 23 amino acids (residues 207-229 in the pea KAS III) was almost completely conserved in the plant KAS IIIs. Modelling this stretch showed they belonged to a peptide fragment that fitted over the active site and contained segments suggested to be involved in substrate binding and in conformational changes during catalysis, as well as an arginine suggested to participate in the acid-base catalytic mechanism.  相似文献   

3.
Mycolic acids are long chain alpha-alkyl branched, beta-hydroxy fatty acids that represent a characteristic component of the Mycobacterium tuberculosis cell wall. Through their covalent attachment to peptidoglycan via an arabinogalactan polysaccharide, they provide the basis for an essential outer envelope membrane. Mycobacteria possess two fatty acid synthases (FAS); FAS-I carries out de novo synthesis of fatty acids while FAS-II is considered to elongate medium chain length fatty acyl primers to provide long chain (C(56)) precursors of mycolic acids. Here we report the crystal structure of Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase (ACP) II mtKasB, a mycobacterial elongation condensing enzyme involved in FAS-II. This enzyme, along with the M. tuberculosis beta-ketoacyl ACP synthase I mtKasA, catalyzes the Claisen-type condensation reaction responsible for fatty acyl elongation in FAS-II and are potential targets for development of novel anti-tubercular drugs. The crystal structure refined to 2.4 A resolution revealed that, like other KAS-II enzymes, mtKasB adopts a thiolase fold but contains unique structural features in the capping region that may be crucial to its preference for longer fatty acyl chains than its counterparts from other bacteria. Modeling of mtKasA using the mtKasB structure as a template predicts the overall structures to be almost identical, but a larger entrance to the active site tunnel is envisaged that might contribute to the greater sensitivity of mtKasA to the inhibitor thiolactomycin (TLM). Modeling of TLM binding in mtKasB shows that the drug fits the active site poorly and results of enzyme inhibition assays using TLM analogues are wholly consistent with our structural observations. Consequently, the structure described here further highlights the potential of TLM as an anti-tubercular lead compound and will aid further exploration of the TLM scaffold towards the design of novel compounds, which inhibit mycobacterial KAS enzymes more effectively.  相似文献   

4.
Mycolic acids are vital components of the Mycobacterium tuberculosis cell wall, and enzymes involved in their formation represent attractive targets for the discovery of novel anti-tuberculosis agents. Biosynthesis of the fatty acyl chains of mycolic acids involves two fatty acid synthetic systems, the multifunctional polypeptide fatty acid synthase I (FASI), which performs de novo fatty acid synthesis, and the dissociated FASII system, which consists of monofunctional enzymes, and acyl carrier protein (ACP) and elongates FASI products to long chain mycolic acid precursors. In this study, we present the initial characterization of purified KasA and KasB, two beta-ketoacyl-ACP synthase (KAS) enzymes of the M. tuberculosis FASII system. KasA and KasB were expressed in E. coli and purified by affinity chromatography. Both enzymes showed activity typical of bacterial KASs, condensing an acyl-ACP with malonyl-ACP. Consistent with the proposed role of FASII in mycolic acid synthesis, analysis of various acyl-ACP substrates indicated KasA and KasB had higher specificity for long chain acyl-ACPs containing at least 16 carbons. Activity of KasA and KasB increased with use of M. tuberculosis AcpM, suggesting that structural differences between AcpM and E. coli ACP may affect their recognition by the enzymes. Both enzymes were sensitive to KAS inhibitors cerulenin and thiolactomycin. These results represent important steps in characterizing KasA and KasB as targets for antimycobacterial drug discovery.  相似文献   

5.
Substrate specificity of condensing enzymes is a predominant factor determining the nature of fatty acyl chains synthesized by type II fatty acid synthase (FAS) enzyme complexes composed of discrete enzymes. The gene (mtKAS) encoding the condensing enzyme, beta-ketoacyl-[acyl carrier protein] (ACP) synthase (KAS), constituent of the mitochondrial FAS was cloned from Arabidopsis thaliana, and its product was purified and characterized. The mtKAS cDNA complemented the KAS II defect in the E. coli CY244 strain mutated in both fabB and fabF encoding KAS I and KAS II, respectively, demonstrating its ability to catalyze the condensation reaction in fatty acid synthesis. In vitro assays using extracts of CY244 containing all E. coli FAS components, except that KAS I and II were replaced by mtKAS, gave C(4)-C(18) fatty acids exhibiting a bimodal distribution with peaks at C(8) and C(14)-C(16). Previously observed bimodal distributions obtained using mitochondrial extracts appear attributable to the mtKAS enzyme in the extracts. Although the mtKAS sequence is most similar to that of bacterial KAS IIs, sensitivity of mtKAS to the antibiotic cerulenin resembles that of E. coli KAS I. In the first or priming condensation reaction of de novo fatty acid synthesis, purified His-tagged mtKAS efficiently utilized malonyl-ACP, but not acetyl-CoA as primer substrate. Intracellular targeting using green fluorescent protein, Western blot, and deletion analyses identified an N-terminal signal conveying mtKAS into mitochondria. Thus, mtKAS with its broad chain length specificity accomplishes all condensation steps in mitochondrial fatty acid synthesis, whereas in plastids three KAS enzymes are required.  相似文献   

6.
Originally annotated as the initiator of fatty acid synthesis (FAS), β‐ketoacyl‐acyl carrier protein synthase III (KAS III) is a unique component of the bacterial FAS system. Novel variants of KAS III have been identified that promote the de novo use of additional extracellular fatty acids by FAS. These KAS III variants prefer longer acyl‐groups, notably octanoyl‐CoA. Acinetobacter baumannii, a clinically important nosocomial pathogen, contains such a multifunctional KAS III (AbKAS III). To characterize the structural basis of its substrate specificity, we determined the crystal structures of AbKAS III in the presence of different substrates. The acyl‐group binding cavity of AbKAS III and co‐crystal structure of AbKAS III and octanoyl‐CoA confirmed that the cavity can accommodate acyl groups with longer alkyl chains. Interestingly, Cys264 formed a disulfide bond with residual CoA used in the crystallization, which distorted helices at the putative interface with acyl‐carrier proteins. The crystal structure of KAS III in the alternate conformation can also be utilized for designing novel antibiotics.  相似文献   

7.
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase), a ubiquitous enzyme preventing a deleterious incorporation of uracil into DNA, has been thought of as a novel target for anticancer and antiviral drug design. The interaction of Plasmodium falciparum dUTPase (PfdUTPase) with deoxyuridine derivatives (dU, dUMP, dUDP and dUpNHpp) has been studied thermodynamically by both isothermal titration and differential scanning calorimetry. ITC shows no cooperativity for the binding of these derivatives. Dependencies in the binding thermodynamic parameters (enthalpy, entropy and Gibbs energy changes) with the number of phosphate groups in the nucleotide are obtained, and from the heat capacity changes no significant conformational changes upon binding are inferred. DSC shows PfdUTPase trimer is very stable but denatures irreversibly, with a more complex denaturation profile than other homologous trimeric dUTPases. The presence of magnesium ions does not influence the denaturation profile, while the presence of deoxyuridine derivatives increases the stability. The increase depends upon nucleotide concentration and type, with dUDP having the greater effect.  相似文献   

8.
The fab1 mutant of Arabidopsis is partially deficient in activity of beta-ketoacyl-[acyl carrier protein] synthase II (KAS II). This defect results in increased levels of 16:0 fatty acid and is associated with damage and death of the mutants at low temperature. Transformation of fab1 plants with a cDNA from Brassica napus encoding a KAS II enzyme resulted in complementation of both mutant phenotypes. The dual complementation by expression of the single gene proves that low-temperature damage is a consequence of altered membrane unsaturation. The fab1 mutation is a single nucleotide change in Arabidopsis KAS2 that results in a Leu337Phe substitution. The Leu337 residue is conserved among plant and bacterial KAS proteins, and in the crystal structures of E. coli KAS I and KAS II, this leucine abuts a phenylalanine whose imidazole ring extends into the substrate binding cavity causing the fatty acid chain to bend. For functional analysis the equivalent Leu207Phe mutation was introduced into the fabB gene encoding the E. coli KAS I enzyme. Compared to wild-type, the Leu207Phe protein showed a 10-fold decrease in binding affinity for the fatty acid substrate, exhibited a modified behavior during size-exclusion chromatography and was severely impaired in condensation activity. These results suggest that the molecular defect in fab1 plants is a structural instability of the KAS2 gene product induced by insufficient space for the imidazole ring of the mutant phenylalanine residue.  相似文献   

9.
Escherichia coli beta-ketoacyl synthases (KAS) I and II carry out the elongation steps in fatty acid synthesis. Analyses using the cross-linker BS(3) [bis(sulphosuccinimidyl) suberate] and surface-enhanced laser desorption/ionization-time-of-flight MS disclosed only monomeric and dimeric forms of KAS II, whereas KAS I also forms higher multimers. The binding affinities for KAS I and KAS II to C(14)-acyl carrier protein (ACP) as well as for C(14)-ACP to KAS I and KAS II were determined. KAS I is sensitive to the ACP released during the transfer reaction, with 50% inhibition at 0.17 microM ACP close to the physiological concentration of ACP (0.13 microM). KAS I and II also differ in carrying out the decarboxylation step of the elongation reaction.  相似文献   

10.
We report here the crystallographic and biophysical analysis of a soluble, catalytically active fragment of the Escherichia coli type I signal peptidase (SPase Delta2-75) in complex with arylomycin A2. The 2.5-A resolution structure revealed that the inhibitor is positioned with its COOH-terminal carboxylate oxygen (O45) within hydrogen bonding distance of all the functional groups in the catalytic center of the enzyme (Ser90 O-gamma, Lys145 N-zeta, and Ser88 O-gamma) and that it makes beta-sheet type interactions with the beta-strands that line each side of the binding site. Ligand binding studies, calorimetry, fluorescence spectroscopy, and stopped-flow kinetics were also used to analyze the binding mode of this unique non-covalently bound inhibitor. The crystal structure was solved in the space group P4(3)2(1)2. A detailed comparison is made to the previously published acyl-enzyme inhibitor complex structure (space group: P2(1)2(1)2) and the apo-enzyme structure (space group: P4(1)2(1)2). Together this work provides insights into the binding of pre-protein substrates to signal peptidase and will prove helpful in the development of novel antibiotics.  相似文献   

11.
-ketoacyl-ACP synthetase III (KAS III) has been purified from avocado using a six-step purification procedure. The enzyme, which is cerulenin-insensitive and thiolactomycin-sensitive, was assayed using a partial component reaction: acetyl CoA:ACP transacylase (ACAT) activity. KAS III activity is distinguished from ACAT activity on the basis that the former is highly stimulated by the addition of malonyl CoA in the presence of malonyl-CoA:ACP transacylase, and the latter is not. KAS III and ACAT activity have been separated from each other thus providing the first evidence that these two discrete activities exist in higher plants. Both of these enzymes have been implicated in the initial reactions of fatty acid synthesis.KAS III was purified 134-fold using a combination of PEG precipitation, Fast Q, ammonium sulphate precipitation, Phenyl Sepharose and ACP-affinity chromatography. The enzyme requires Triton X-100 for solubility and is highly salt sensitive. The subunit molecular mass of 37 kDa has been identified by SDS-PAGE. The results of gel filtration analysis are consistent with the native enzyme being homodimeric. The native molecular mass of KAS III is 69 kDa and that of ACAT 18.5 kDa. The enzyme has a pH optimum of 7.0–7.5, which is similar to the pH optimum of the ACAT reaction. The Km for acetyl CoA is 12.5 M and the Km for malonyl-ACP is 14M. Both KAS III and ACAT are sensitive to thiolactomycin inhibition. The results are discussed with respect to the potential role of acetyl CoA:ACP transacylase in plants.  相似文献   

12.
Aldose reductase, the first and rate-limiting enzyme of the polyol pathway, is a target for drug design for the treatment of diabetes complications. The structures of aldose reductase in complex with the cyclic imide inhibitors Fidarestat and Minalrestat were recently determined at ultra-high resolution (Proteins 2004, 55, 805). We have used the detailed structural information revealed at atomic resolution, including the assignment of protonation states for the inhibitors and active site residues, together with molecular modelling and noncovalent mass spectrometry to characterise the type and strength of the interactions between the enzyme and the inhibitors, and to attempt the design of novel potential inhibitors with enhanced binding energies of the complexes. The VC(50) values measured by mass spectrometry (accelerated voltage of ions needed to dissociate 50% of a noncovalent complex in the gas phase) for the aldose reductase inhibitors correlate with the IC(50) values (concentration of inhibitor giving 50% inhibition in solution) and with the electrostatic binding energies calculated between the active site residues Tyr48, His110 and Trp111 and the inhibitors, suggesting that electrostatic interactions play a major role in inhibitor binding. Our molecular modelling and design studies suggest that the replacement of the fluorine atom in Minalrestat's bromo-fluorobenzyl group with nitro, amide and carboxylate functional groups enhanced the predicted net binding energies of the complexes by 16%, 31% and 68%, respectively. When the carbamoyl group of Fidarestat was replaced with a nitro, 4-hydroxyl phenyl and carboxylate functional groups, the predicted net binding energies of the complexes were enhanced by 13%, 34% and 46%, respectively.  相似文献   

13.
Novel fluorescent derivatives of macrolide antibiotics related to tylosin bearing rhodamine, fluorescein, Alexa Fluor 488, BODIPY FL, and nitrobenzoxadiazole (NBD) residues were synthesized. The formation of complexes of these compounds with 70S E. coli ribosomes was studied by measuring the fluorescence polarization depending on the ribosome amount at constant concentration of the fluorescent substance. With the synthesized fluorescent tylosin derivatives, the dissociation constants for ribosome complexes with several known antibiotics and macrolide analogs previously obtained were determined. It was found that the fluorescent tylosin derivatives containing BODIPY FL and NBD groups could be used to screen the binding of novel antibiotics to bacterial ribosomes in the macrolide-binding site.  相似文献   

14.
Comparative modeling of proteins in the design of novel renin inhibitors   总被引:1,自引:0,他引:1  
Renin, the first enzyme in the renin-angiotensin system, is critically important for the maintenance of blood pressure, and, therefore, as a target for antihypertensive therapy. The three-dimensional structure of renin would be an invaluable aid in understanding the functional properties of renin as well as in the design of novel, potent inhibitors. Three-dimensional models of renin have been developed by a number of different groups based on comparative homology modeling from the other known aspartic proteinase structures. These models have been used widely in the drug design process to suggest targets for synthesis and to rationalize the structure-activity relationships of compounds. This review describes the different published renin models and compares them to the extent possible. Applications of these model renin and renin-inhibitor complex structures to biological function and inhibitor design are summarized.  相似文献   

15.
The program GRID was used to design novel potential inhibitors of human sorbitol dehydrogenase based on a model of the holoenzyme in complex with the inhibitor WAY135 706. Replacement of the methyl hydroxyl group of the inhibitor with methyl phosphate and methyl carboxylate functional groups increased the net binding energy of the complex by 2.0- and 1.7-fold, respectively. This study may be useful in the development of potent and more specific inhibitors of the enzyme.  相似文献   

16.
β-Ketoacyl-acyl carrier protein (ACP) synthetase II (KAS II) is one of three Escherichia coli isozymes that catalyze the elongation of growing fatty acid chains by condensation of acyl-ACP with malonyl-ACP. Overexpression of this enzyme has been found to be extremely toxic to E. coli, much more so than overproduction of either of the other KAS isozymes, KAS I or KAS III. The immediate effect of KAS II overproduction is the cessation of phospholipid synthesis, and this inhibition is specifically due to the blockage of fatty acid synthesis. To determine the cause of this inhibition, we examined the intracellular pools of ACP, coenzyme A (CoA), and their acyl thioesters. Although no significant changes were detected in the acyl-ACP pools, the CoA pools were dramatically altered by KAS II overproduction. Malonyl-CoA increased to about 40% of the total cellular CoA pool upon KAS II overproduction from a steady-state level of around 0.5% in the absence of KAS II overproduction. This finding indicated that the conversion of malonyl-CoA to fatty acids had been blocked and could be explained if either the conversion of malonyl-CoA to malonyl-ACP and/or the elongation reactions of fatty acid synthesis had been blocked. Overproduction of malonyl-CoA:ACP transacylase, the enzyme catalyzing the conversion of malonyl-CoA to malonyl-ACP, partially relieved the toxicity of KAS II overproduction, consistent with a model in which high levels of KAS II blocks access of the other KAS isozymes to malonyl-CoA:ACP transacylase.  相似文献   

17.
The crystal structure of the fatty acid elongating enzyme beta-ketoacyl [acyl carrier protein] synthase I (KAS I) from Escherichia coli has been determined to 2.3 A resolution by molecular replacement using the recently solved crystal structure of KAS II as a search model. The crystal contains two independent dimers in the asymmetric unit. KAS I assumes the thiolase alpha(beta)alpha(beta)alpha fold. Electrostatic potential distribution reveals an acyl carrier protein docking site and a presumed substrate binding pocket was detected extending the active site. Both subunits contribute to each substrate binding site in the dimer.  相似文献   

18.
Abstract

Renin, the first enzyme in the renin-angiotensin system, is critically important for the maintenance of blood pressure, and, therefore, as a target for antihypertensive therapy. The three-dimensional structure of renin would be an invaluable aid in understanding the functional properties of renin as well as in the design of novel, potent inhibitors. Three-dimensional models of renin have been developed by a number of different groups based on comparative homology modeling from the other known aspartic proteinase structures. These models have been used widely in the drug design process to suggest targets for synthesis and to rationalize the structure-activity relationships of compounds. This review describes the different published renin models and compares them to the extent possible. Applications of these model renin and renin-inhibitor complex structures to biological function and inhibitor design are summarized.  相似文献   

19.
In spite of decades of research, our understanding of the principles of antibiotic binding to the ribosome and the mechanisms of drug action remains only fragmentary. Recent progress in biochemical and genetic studies of some "old" and new antibiotics and the availability of high-resolution structures of the ribosome subunits allows mapping the antibiotic-binding sites at atomic resolution. In this review, interaction of three groups of antibiotics with the ribosome and the mechanisms of the drug action are discussed, considering the data used to map the binding sites of the new macrolide derivatives, ketolides, a novel clinically important antibiotic linezolid, and a still experimental drug evernimicin.  相似文献   

20.
The long-chain alpha-alkyl-beta-hydroxy fatty acids, termed mycolic acids, which are characteristic components of the mycobacterial cell wall are produced by successive rounds of elongation catalyzed by a multifunctional (type I) fatty acid synthase complex followed by a dissociated (type II) fatty acid synthase. In bacterial type II systems, the first initiation step in elongation is the condensation of acetyl-CoA with malonyl-acyl carrier protein (ACP) catalyzed by beta-ketoacyl-ACP III (FabH). An open reading frame in the Mycobacterium tuberculosis genome (Rv0533c), now termed mtfabH, was 37.3% identical to Escherichia coli ecFabH and contained the Cys-His-Asn catalytic triad signature. However, the purified recombinant mtFabH clearly preferred long-chain acyl-CoA substrates rather than acyl-ACP primers and did not utilize acetyl-CoA as a primer in comparison to ecFabH. In addition, purified mtFabH was sensitive to thiolactomycin and resistant to cerulenin in an in vitro assay. However, mtFabH overexpression in Mycobacterium bovis BCG did not confer thiolactomycin resistance, suggesting that mtFabH may not be the primary target of thiolactomycin inhibition in vivo and led to several changes in the lipid composition of the bacilli. The data presented is consistent with a role for mtFabH as the pivotal link between the type I and type II fatty acid elongation systems in M. tuberculosis. This study opens up new avenues for the development of selective and novel anti-mycobacterial agents targeted against mtFabH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号