首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Myxomycetes are a major component of soil amoebae, displaying a complex life cycle that terminates in the formation of often macroscopic fruiting bodies. The classification of Myxomycetes is controversial and strongly depends on the weight given by different authors to morphological and developmental characters. We used a molecular approach to establish the phylogenetic relationships in the dark-spored orders Stemonitales and Physarales. Twenty-five small subunit ribosomal RNA gene sequences were obtained, with focus on two Stemonitales genera, Lamproderma and Comatricha. Unexpectedly, our results show that Stemonitales are paraphyletic with Physarales arising from within a Lamproderma clade. The genus Lamproderma itself is polyphyletic and can be divided into two distinct clades. Additionally, we found that Comatricha nigricapillitia comprises two cryptic species, both related to Enerthenema. Our study allows the reappraisal of morphological and developmental characters in the light of molecular data and sets foundations for a new classification of Myxomycetes.  相似文献   

2.
Petal Development in Lotus japonicus   总被引:1,自引:0,他引:1  
Previous studies have demonstrated that petal shape and size in legume flowers are determined by two separate mechanisms, dorsoventral (DV) and organ internal (IN) asymmetric mechanisms, respectively. However, little is known about the molecular mechanisms controlling petal development in legumes. To address this question, we investigated petal development along the floral DV axis in Lotus japonicus with respect to cell and developmental biology by comparing wild‐type legumes to mutants. Based on morphological markers, the entire course of petal development, from initiation to maturity, was grouped to define 3 phases or 13 stages. In terms of epidermal micromorphology from adaxial surface, mature petals were divided into several distinct domains, and characteristic epidermal cells of each petal differentiated at stage 9, while epidermal cells of all domains were observed until stage 12. TCP and MIXTA‐like genes were found to be differentially expressed in various domains of petals at stages 9 and 12. Our results suggest that DV and IN mechanisms interplay at different stages of petal development, and their interaction at the cellular and molecular level guides the elaboration of domains within petals to achieve their ideal shape, and further suggest that TCP genes determine petal identity along the DV axis by regulating MIXTA‐like gene expression.  相似文献   

3.
4.
Comparative studies of nematode embryogenesis among different clades revealed considerable variations. However, to what extent developmental differences exist between closely related species has mostly remained nebulous. Here, we explore the correlation between phylogenetic neighborhood and developmental variation in a restricted and morphologically particularly uniform taxonomic group (Panagrolaimidae) to determine to what extent (1) morphological and developmental characters go along with molecular data and thus can serve as diagnostic tools for the definition of kinship and (2) developmental system drift (DSD; modifications of developmental patterns without corresponding morphological changes) can be found within a small taxonomic unit. Our molecular approaches firmly support subdivision of Panagrolaimid nematodes into two monophyletic groups. These can be discriminated by distinct peculiarities in early embryonic cell lineages and a mirror-image expression pattern of the gene skn-1. This suggests major changes in the logic of cell specification and the action of DSD in the studied representatives of the two neighboring nematode taxa.  相似文献   

5.
《Journal of Asia》2022,25(3):101952
Subterranean nymphal development in cicadas presents challenges to researchers in accurately estimating the number of their developmental stages, although such information is crucial to understanding and predicting their population dynamics. While most studies have relied on head width as an attribute for life-stage determination to date, such character in cicadas can be highly variable and thus differentiation solely based on such morphology is prone to subjectivity in practice. Here, we propose a reliable method for instar estimation that is applicable to Hyalessa fuscata nymphs. We first obtained morphometrics of nymphs in all stages. Second, we computed logarithm-transformation and principal component analysis to extract a transformed variable that captures most of the variance of morphological characteristics. Third, k-means were computed to divide the dataset into distinct clusters assuming four-, five- and six life-stage scenarios for the best interferences of life stages. Finally, simple linear regression analysis was conducted to compare and select the best fit model. Our result shows that five nymphal stages best fit for H. fuscata nymphs. This method is expected to provide an easy-to-handle ecological tool for the study of life history of cicadas as well as other insects that have long life cycles and multiple developmental stages.  相似文献   

6.
Progress in understanding the Frankia -actinorhizal symbiosis has paralleled that of the Rhizobium -legume symbiosis. Previously, these two nitrogen-fixing symbioses have been considered as distinct and unrelated entities. However, it seems likely that many of the developmental stages, and perhaps even the molecular signals, are shared between these two apparently independent associations. For this reason, we propose to emphasize the similarities between the two symbioses by calling for a uniformity of terminology to describe nodule development.  相似文献   

7.
Superfetation, the ability of females to simultaneously carry more than one brood at different developmental stages, is an unusual reproductive strategy that has independently evolved several times in the livebearing fish family Poeciliidae. Why this strategy has evolved remains uncertain. One hypothesis is that superfetation is a response to selective pressures that constrain the physical space within a female in which her offspring can develop. This hypothesis is reasonable, because superfetation should reduce the total volume needed to house developing embryos – that is, fewer large, fully developed embryos will be held by a superfetating female (with several broods at different developmental stages) than a non‐superfetating female (where all embryos reach a fully developed stage at the same time). In this study, we explore this ‘morphological constraint’ hypothesis of superfetation by examining the livebearing fish, Poeciliopsis turrubarensis. We found that populations vary markedly in degree of superfetation, with individuals carrying from two to four distinct broods across different geographic areas. These populations also occupy a range of habitat types: some populations occur in slow moving coastal rivers near the ocean, while other populations occur far inland in fast moving waters that drain steep mountain environments. In comparing populations from these two types of environments, we find a strong association between stream habitat type and the degree of superfetation within populations. Fish from inland populations have higher levels of superfetation than their coastal counterparts. In addition, geometric morphometric analysis revealed that inland populations are also more fusiform than fish from coastal locations. Combined, these two lines of evidence support the ‘morphological constraint’ hypothesis, and suggest that the life history strategy of superfetation could be driven by environmental pressures that favor a more streamlined phenotype.  相似文献   

8.
In Drosophila, the morphological diversity is generated by the activation of different sets of active developmental regulatory genes in the different body subdomains. Here, we have investigated the role of the homothorax/extradenticle (hth/exd) gene pair in the elaboration of the pattern of the anterior mesothorax (notum). These two genes are active in the same regions and behave as a single functional unit. We find that their original uniform expression in the notum is downregulated during development and becomes restricted to two distinct, alpha and betasubdomains. This modulation appears to be important for the formation of distinct patterns in the two subdomains. The regulation of hth/exd expression is achieved by the combined repressing functions of the Pax gene eyegone (eyg) and of the Dpp pathway. hth/exd is repressed in the body regions where eyg is active and that also contain high levels of Dpp activity. We also present evidence for a molecular interaction between the Hth and the Eyg proteins that may be important for the patterning of the alpha subdomain.  相似文献   

9.
Morphological identification of cnidarian species can be difficult throughout all life stages due to the lack of distinct morphological characters. Moreover, in some cnidarian taxa genetic markers are not fully informative, and in these cases combinations of different markers or additional morphological verifications may be required. Proteomic fingerprinting based on MALDI-TOF mass spectra was previously shown to provide reliable species identification in different metazoans including some cnidarian taxa. For the first time, we tested the method across four cnidarian classes (Staurozoa, Scyphozoa, Anthozoa, Hydrozoa) and included different scyphozoan life-history stages (polyp, ephyra, medusa) in our dataset. Our results revealed reliable species identification based on MALDI-TOF mass spectra across all taxa with species-specific clusters for all 23 analysed species. In addition, proteomic fingerprinting was successful for distinguishing developmental stages, still by retaining a species specific signal. Furthermore, we identified the impact of different salinities in different regions (North Sea and Baltic Sea) on proteomic fingerprints to be negligible. In conclusion, the effects of environmental factors and developmental stages on proteomic fingerprints seem to be low in cnidarians. This would allow using reference libraries built up entirely of adult or cultured cnidarian specimens for the identification of their juvenile stages or specimens from different geographic regions in future biodiversity assessment studies.  相似文献   

10.
11.
In vertebrates with complex, biphasic, life cycles, larvae have a distinct morphology and ecological preferences compared to metamorphosed juveniles and adults. In amphibians, abrupt and rapid metamorphic changes transform aquatic larvae to terrestrial juveniles. The main aim of this study is to test whether, relative to larval stages, metamorphosis (1) resets the pattern of variation between ontogenetic stages and species, (2) constrains intraspecific morphological variability, and (3) similar to the “hour‐glass” model reduces morphological disparity. We explore postembryonic ontogenetic trajectories of head shape (from hatching to completed metamorphosis) of two well‐defined, morphologically distinct Triturus newts species and their F1 hybrids. Variation in head shape is quantified and compared on two levels: dynamic (across ontogenetic stages) and static (at a particular stage). Our results show that the ontogenetic trajectories diverge early during development and continue to diverge throughout larval stages and metamorphosis. The high within‐group variance and the largest disparity level (between‐group variance) characterize the metamorphosed stage. Hence, our results indicate that metamorphosis does not canalize head shape variation generated during larval development and that metamorphosed phenotype is not more constrained relative to larval ones. Therefore, metamorphosis cannot be regarded as a developmental constraint, at least not for salamander head shape.  相似文献   

12.
Morphological and cytological studies are complementary approaches to understand the molecular mechanisms that regulate floral developmental pathways. To better understand abnormal mutant phenotypes in floral development, we conducted detailed observations and investigations of the morphology, cytology, and cell ultrastructure of wild-type Chinese cabbage (Brassica campestris L. ssp. chinensis Makino and syn. B. rapa ssp. chinensis) flowers when they developed from primordia to anthesis. First, we measured bud and organ length with a stereo microscope and observed the developmental status and characteristics of the floral organs using a scanning electron microscope; then we made thin slices of anthers to observe the developmental stage and characteristics of pollen using an optical microscope; and finally, we made super-thin slices of anthers to observe the ultrastructure of pollen during its development with the aid of a transmission electron microscope. In this study, the floral developmental continuum was divided into 17 stages based on significant changes in the shape of floral primordia, and the pollen developmental continuum was divided into 14 stages based on the developmental characteristics. The results could provide the morphological basis for further research on the molecular mechanisms that regulate development of the floral organs and/or pollen of Chinese cabbage and their allied species.  相似文献   

13.
Three midline glial populations are found at the corticoseptal boundary: the glial wedge (GW), glia within the indusium griseum (IGG), and the midline zipper glia (MG). Two of these glial populations are involved in axonal guidance at the cortical midline, specifically development of the corpus callosum. Here we investigate the phenotypic and molecular characteristics of each population and determine whether they are generated at the same developmental stage. We find that the GW is derived from the radial glial scaffold of the cortex. GW cells initially have long radial processes that extend from the ventricular surface to the pial surface, but by E15 loose their pial attachment and extend only part of the way to the pial surface. Later in development the radial morphology of cells within the GW is replaced by multipolar astrocytes, providing supportive evidence that radial glia can transform into astrocytes. IGG and MG do not have a radial morphology and do not label with the radial glial markers, Nestin and RC2. We conclude that the GW and IGG have different morphological and molecular characteristics and are born at different stages of development. IGG and MG have many phenotypic and molecular characteristics in common, indicating that they may represent a common population of glia that becomes spatially distinct by the formation of the corpus callosum.  相似文献   

14.
The various stages of the malaria parasites in the vertebrate host and in the mosquito vector offer numerous candidates for vaccine and drug development. However, the biological complexity of the parasites and the interaction with the immune system of the host continue to frustrate all such efforts thus far. While most of the targets for drug and vaccine design have focused on the asexual stages, the sexual stages of the parasite are critical for transmission and maintenance of parasites among susceptible vertebrate hosts. Sexual stage parasites undergo a series of morphological and biochemical changes during their development, accompanied by a co-ordinated cascade of a distinct expression pattern of sexual stage specific proteins. Mechanisms underlying the developmental switch from asexual parasite to sexual parasite still remain elusive. Methods that can break the malaria transmission cycle thus occupy a central place in the overall malaria control strategies. This paper provides a review of genes expressed in sexually differentiated Plasmodium. In the past few years, a molecular approach based on targeted gene disruption has revealed fascinating biological roles for many of the sexual stage gene products. In addition, we will briefly discuss other functional genomic approaches employed to study not only sexual but also other aspects of host-parasite biology.  相似文献   

15.
16.
The developmental cycle of the obligate intracellular prokaryote Chlamydia trachomatis involves the serial alternation of two distinct morphological forms of the organism. To examine the basis of chlamydial differentiation we have searched for developmentally regulated gene products in this species. Chlamydia-infected cells were pulse-labelled with [35S] cysteine at various stages of development and the products of synthesis examined by SDS-PAGE. Our results indicate that the synthesis of the cysteine-rich outer-membrane proteins is developmentally regulated, occurring only late in the cycle during the conversion of reticulate bodies to elementary bodies. Both hydroxyurea and ampicillin block this conversion; as a result of this blockade the cysteine-rich outer-membrane proteins are not produced in the presence of either drug.  相似文献   

17.
透骨草属(Phryma)是一个单种属,间断分布于东亚与北美东部.尽管东亚与北美东部居群形态差异非常小,但分子变异却非常明显.本研究进一步运用AFLP两对引物来衡量透骨草属的遗传多样性并评估其形态保守性.结果发现透骨草的遗传差异主要存在于两大洲的居群之间.聚类与PCA分析显示透骨草分成两大支与其地理分布相吻合,一支全部来自东亚,另一支则是北美东部的居群.我们的结果强烈支持透骨草东亚--北美东部居群存在明显的遗传分化和形态保守.  相似文献   

18.
Disabled-1 (Dab1) plays a key role in reelin-mediated neuronal migration during brain development. Tyrosine phosphorylation of Dab1 at two YQXI and two YXVP motifs recruits multiple SH2 domains, resulting in activation of a wide range of signaling cascades. However, the molecular mechanisms underlying the coordinated regulation of Dab1 downstream effectors remain poorly understood. Here, we show that alternative splicing results in inclusion of different combinations of YQXI and YXVP motifs in Dab1 isoforms during development. Dab1 variants with partial or complete loss of YQXI motifs are preferentially expressed at early developmental stages, whereas the commonly studied Dab1 is predominantly expressed at late developmental stages. Expression of Dab1 variants in 293T and Neuro2a cells reveals reduced levels or absence of tyrosine phosphorylation in variants that have lost one or both YQXI motifs. We further demonstrate that Dab1 variants differ in their abilities to activate Src and recruit distinct SH2 domains involved in specific downstream signaling pathways. We propose that coordinated expression of specific Dab1 isoforms in different populations of cells in the developing brain contributes to precise neuronal migration by modulating the activity of subsets of Dab1 downstream effectors.  相似文献   

19.
Identifying the mechanisms initiating sympatric diversification in vertebrates has remained a conceptual challenge. Here, we analyse an assemblage of sympatric charr (Salvelinus malma) morphs from landlocked Lake Kronotskoe basin as a model to uncover the divergence pathways in freshwater fishes during the early life history stages. All morphs have distinct developmental biology, but a similar developmental rate retardation compared to the ancestor. Our study reveals that adult morphological differences, which acquire functionality at maturation, originate in the early juvenile stages due to heterochrony in skeletogenesis and allometric changes triggered by variation in metabolic activity. The craniofacial differences among the morphs result from asynchronous development of several skeletal modules. The accelerated ossification of teeth‐armed bones occurs in predatory feeding morphs, whereas cranial cover ossification is promoted in benthivorous morphs. These contrasting growth patterns have led to seven phenotypes that span a range far beyond the ancestral variability. The most distinct morphs are a riverine spawning, epilimnetic predator and a lacustrine spawning, profundal benthic feeder. Taken together, we argue that the adaptive morphological differentiation in these sympatric freshwater fishes is driven by diverging patterns in ossification rate and metabolic activity against a background of uneven somatic growth. This divergence is primarily associated with basic environmental differences on the nursery grounds that might be unrelated to resource use. This nonheritable phenotype divergence is then exposed to natural selection that could result in further adaptive genetic changes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号