首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scanning and integrating microdensitometry of azure B- and Coomassie brilliant blue G-stained tissue sections was used to measure the levels of RNA and protein, respectively, in pyramidal neurons of the insular cortex (INS) and midfrontal gyrus (MFG) in patients with Alzheimer's disease (AD) and age-matched, nondemented control subjects. AD was associated with a decreased neuronal RNA (by 7·4 per cent) and protein (by 28·7 per cent) content in INS. Although the neuronal RNA content was maintained at the control amounts in MFG, the average protein level was lower (14·7 per cent) in AD patients. These results demonstrate a disease-related impairment in metabolic function in two brain regions connected via discrete corticocortical pathways. Such findings support the hypothesis that a primary site of pathology occurs in AD, and specific neural deficits occur secondarily in certain connected brain regions.  相似文献   

2.
One of the major clinical findings in Alzheimer's disease (AD) is the formation of deposits of beta-amyloid protein in amyloid plaques, derived from the beta-amyloid precursor protein (beta-APP). To determine the possible use of beta-APP as a diagnostic marker for AD in CSF, a monoclonal antibody-based immunoassay specific for this protein was developed. The assay does not differentiate between beta-APP695 and beta-APP751 forms but does preferentially recognize beta-APP751 complexed with a protease. Of the two sets of CSF samples tested, one set, obtained from living patients, gave a slightly lower level of beta-APP in AD and Parkinson's disease patients relative to controls, whereas the other set, composed of postmortem samples, showed no significant differences between the AD and control groups.  相似文献   

3.
Differentiating apoptosis from necrosis is a challenge in single cells and in parenchymal tissues. The techniques available, including in situ TUNEL (Terminal deoxyribonucleotide transferase-mediated dUTP-X Nick End-Labeling) staining, DNA ladder assay, and flow cytometry, suffer from low sensitivity or from a high false-positive rate. This study, using a Jurkat cell model, initially evaluated the specificity of the neutral comet assay and flow cytometry compared to the gold standard, electron microscopy, for detection of apoptosis and necrosis. Neutral comet assay distinguished apoptosis from necrosis in Jurkat cells, as evidenced by the increased comet score in apoptotic cells and the almost zero comet score in necrotic cells. These findings were consistent with those of electron microscopy and flow cytometry. Furthermore, using rats with burn or ischemia/reperfusion injury, well-established models of skeletal and cardiac muscle tissue apoptosis, respectively, we applied the comet assay to detect apoptosis in these muscles. Neutral comet assay was able to detect apoptotic changes in both models. In the muscle samples from rats with burn or ischemia-reperfusion injury, the comet score was higher than that of muscle samples from their respective controls. These studies confirm the consistency of the comet assay for detection of apoptosis in single cells and provide evidence for its applicability as an additional method to detect apoptosis in parenchymal cells.  相似文献   

4.
The classic neuropathological diagnostic markers for AD are amyloid plaques and neurofibrillary tangles, but their role in the etiology and progression of the disease remains incompletely defined. Research over the last decade has revealed that cell cycle abnormalities also represent a major neuropathological feature of AD. These abnormalities appear very early in the disease process, prior to the appearance of plaques and tangles; and it has been suggested that neuronal cell cycle regulatory failure may be a significant component of the pathogenesis of AD. The amyloid precursor protein (APP) is most commonly known as the source of the beta-amyloid (Abeta) peptides that accumulate in the brains of patients with AD. However, a large body of work supports the idea that APP is also a signaling receptor. Most recently, it has been shown that familial AD (FAD) mutations in APP or simple overexpression of wild type APP cause dysfunction of APP signaling, resulting in initiation of DNA synthesis in neurons and consequent apoptosis. In this article, we review the evidence that APP has the potential to activate aberrant neuronal cell cycle re-entry in AD, and we describe a signal transduction pathway that may mediate this abnormal activation of the cell cycle.  相似文献   

5.
Presenilin 1 (PS1) plays a critical role in the gamma-secretase processing of the amyloid precursor protein to generate the beta-amyloid peptide, which accumulates in plaques in the pathogenesis of Alzheimer's disease (AD). Mutations in PS1 cause early onset AD, and proteins that interact with PS1 are of major functional importance. We report here the coimmunoprecipitation of PS1 and acetylcholinesterase (AChE), an enzyme associated with amyloid plaques. Binding occurs through PS1 N-terminal fragment independent of the peripheral binding site of AChE. Subcellular colocalization of PS1 and AChE in cultured cells and coexpression patterns of PS1 and AChE in brain sections from controls and subjects with sporadic or familial AD indicated that PS1 and AChE are located in the same intracellular compartments, including the perinuclear compartments. A PS1-A246E pathogenic mutation expressed in transgenic mice leads to decreased AChE activity and alteration of AChE glycosylation and the peripheral binding site, which may reflect a shift in protein conformation and disturbed AChE maturation. In both the transgenic mice and humans, mutant PS1 impairs coimmunoprecipitation with AChE. The results indicate that PS1 can interact with AChE and influence its expression, supporting the notion of cholinergic-amyloid interrelationships.  相似文献   

6.
In the search for novel probes for the imaging in vivo of beta-amyloid plaques in Alzheimer's disease (AD) brain, we have synthesized and evaluated a series of 3,5-diphenyl-1,2,4-oxadiazole (DPOD) derivatives. The affinity for beta-amyloid plaques was assessed by an in vitro-binding assay using pre-formed synthetic Abeta42 aggregates. The new series of DPOD derivatives showed excellent affinity for Abeta aggregates with K(i) values ranging from 4 to 47nM. In biodistribution experiments using normal mice, [(125)I]12, [(125)I]13, [(125)I]14, and [(125)I]15 examined displayed sufficient uptake for imaging, ranging from 2.2 to 3.3% ID/g. But the washout of the four ligands from the brain was relatively slow. Although additional modifications are necessary to improve the uptake and rapid clearance of non-specifically bound radiotracers, the DPOD pharmacophore with high-binding affinity for Abeta aggregates may be useful as a backbone structure to develop novel beta-amyloid imaging agents.  相似文献   

7.
A novel series of aurone derivatives for in vivo imaging of beta-amyloid plaques in the brain of Alzheimer's disease (AD) were synthesized and characterized. When in vitro binding studies using Abeta(1-42) aggregates were carried out with aurone derivatives, they showed high binding affinities for Abeta(1-42) aggregates at the K(i) values ranging from 1.2 to 6.8 nM. When in vitro plaque labeling was carried out using double transgenic mice brain sections, the aurone derivatives intensely stained beta-amyiloid plaques. Biodistribution studies in normal mice after i.v. injection of the radioiodinated aurones displayed high brain uptake (1.9-4.6% ID/g at 2 min) and rapid clearance from the brain (0.11-0.26% ID/g at 60 min), which is highly desirable for amyloid imaging agents. The results in this study suggest that novel radiolabeled aurones may be useful amyloid imaging agents for detecting beta-amyloid plaques in the brain of AD.  相似文献   

8.
A novel series of chalcone derivatives for in vivo imaging beta-amyloid plaques in the brain of Alzheimer's disease (AD) were synthesized and characterized. When in vitro binding studies using Abeta aggregates were carried out with chalcone derivatives, the binding affinities for Abeta aggregate varied from 3 to 105 nM. The radioiodinated chalcones were successfully prepared through an iododestannylation reaction from the corresponding tributyltin derivatives using hydrogen peroxide as the oxidant in high yields and with high radiochemical purities. Biodistribution studies in normal mice after iv injection of the radioiodinated chalcones displayed high brain uptake (2.0-4.7% ID/g at 2 min) and rapid clearance from the brain (0.2-0.6% ID/g at 30 min), which is highly desirable for amyloid imaging agents. The results in this study suggest that the novel radioiodinated chalcones may be useful amyloid imaging agents for detecting beta-amyloid plaques in the brain of AD.  相似文献   

9.
Using immunohistochemical techniques we studied the light microscopic localization of ADAMs (A Disintegrin And Metalloprotease) 10 and 15 in different neocortical areas of the human brain during normal aging, and also in patients with Alzheimer disease (AD) and Down syndrome (DS). ADAM 10, a putative alpha-secretase involved in Notch signaling, was found in neurons of the perinatal cortex. During aging there is an increase in intraneuronal staining intensity and in the number of cortical nerve cells that contain the enzyme. Furthermore, in AD and DS brains ADAM 10 immunoreactivity was associated with diffuse and neuritic plaques. ADAM 15 was detected in perinatal cortical pyramidal cells; during aging there was also an increase in intracellular staining and the number of stained cells per volume (cell density). In AD brains ADAM 15 was seen in a few diffuse plaques. Morphometric analysis revealed a significant reduction of ADAM 10 but not ADAM 15 immunoreactive neurons in AD brains in comparison to controls. Our findings support the idea that ADAM 10 is involved in the pathophysiology of AD and DS. ADAM 15 might be linked to AD via interaction with integrin and/or src protein tyrosine kinases.  相似文献   

10.
The amyloid beta peptide abeta (25-35) induces apoptosis independent of p53   总被引:5,自引:0,他引:5  
Apoptosis of neuronal cells apparently plays a role in Alzheimer's disease (AD). The amyloid beta (Abeta) peptide derived from beta-amyloid precursor protein is found in AD brain in vivo and can induce apoptosis in vitro. While p53 accumulates in cells of AD brain, it is not known if p53 plays an active role in Abeta-induced apoptosis. We show here that inactivation of p53 in two experimental cell lines, either by expression of the papillomavirus E6 protein or by a shift to restrictive temperature, does not affect apoptosis induction by Abeta (25-35), indicating that Abeta induces apoptosis in a p53-independent manner.  相似文献   

11.
Terminal deoxynucleotidyl transferase (TdT) deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) is the method of using the TdT enzyme to covalently attach a tagged form of dUTP to 3’ ends of double- and single-stranded DNA breaks in cells. It is a reliable and useful method to detect DNA damage and cell death in situ. This video describes dissection, tissue processing, sectioning, and fluorescence-based TUNEL labeling of mouse skeletal muscle. It also describes a method of semi-automated TUNEL signal quantitation. Inherent normal tissue features and tissue processing conditions affect the ability of the TdT enzyme to efficiently label DNA. Tissue processing may also add undesirable autofluorescence that will interfere with TUNEL signal detection. Therefore, it is important to empirically determine tissue processing and TUNEL labeling methods that will yield the optimal signal-to-noise ratio for subsequent quantitation. The fluorescence-based assay described here provides a way to exclude autofluorescent signal by digital channel subtraction. The TUNEL assay, used with appropriate tissue processing techniques and controls, is a relatively fast, reproducible, quantitative method for detecting apoptosis in tissue. It can be used to confirm DNA damage and apoptosis as pathological mechanisms, to identify affected cell types, and to assess the efficacy of therapeutic treatments in vivo.  相似文献   

12.
The proteolysis of beta-amyloid (Abeta) requires neprylisin, an enzyme that has been shown as reduced in Alzheimer's disease (AD). We investigated whether a decrease in neprilysin levels contributes to the accumulation of amyloid deposits not only in AD but also in the normal aging. We analyzed neprilysin mRNA and protein levels in cerebral cortex from 10 cognitively normal elderly subjects with amyloid plaques (NA), 10 cases of AD, and 10 control cases free of amyloid plaques. We found a significant decrease in neprilysin mRNA levels in both AD and NA compared to control cases. Thereby, the defect of neprilysin appears to correlate with Abeta deposition but not with degeneration and dementia.  相似文献   

13.
Thermal injury has been shown to alter gut epithelium and heart myocyte homeostasis by inducing programmed cell death. The effect of thermal injury on hepatocyte apoptosis and proliferation, however, has not been established. The purpose of this study was to determine whether a large thermal injury increases liver cell apoptosis and proliferation and whether these changes were associated with alterations in hepatic nuclear factor kappaB (NF-kappaB) expression and changes in liver enzymes and amount of protein. Sprague-Dawley rats received a 40% total body surface area scald burn or sham burn. Rats were killed and livers were harvested at 1, 2, 5, and 7 days after burn. Liver cell apoptosis was determined by terminal deoxyuridine nick end labeling (TUNEL) assay and cell proliferation by immunohistochemistry for proliferating cell nuclear antigen. Hepatic NF-kappaB expression was determined by Western blot, and total hepatic protein content was determined by protein assay. Protein concentration decreased after burn compared with sham controls (P < 0.05). Liver cell apoptosis, proliferation, and NF-kappaB expression in hepatocytes increased in burned rats compared with controls (P < 0.05). It was concluded that thermal injury induces hepatic cell apoptosis and proliferation associated with an increase in hepatic NF-kappaB expression and a decrease in hepatic protein concentration.  相似文献   

14.
To characterize antibodies produced in humans in response to Abeta42 vaccination, we carried out immunohistochemical examinations of the brains of both transgenic mice and human patients with beta-amyloid pathology. We collected sera from patients with Alzheimer disease who received a primary injection of pre-aggregated Abeta42 followed by one booster injection in a placebo-controlled study. Antibodies in immune sera recognized beta-amyloid plaques, diffuse Abeta deposits and vascular beta-amyloid in brain blood vessels. The antibodies did not cross-react with native full-length beta-amyloid precursor protein or its physiological derivatives, including soluble Abeta42. These findings indicate that vaccination of AD patients with Abeta42 induces antibodies that have a high degree of selectivity for the pathogenic target structures. Whether vaccination to produce antibodies against beta-amyloid will halt the cognitive decline in AD will depend upon clinical assessments over time.  相似文献   

15.
Oxidative damage can lead to neuronal dysfunction in the brain due to modifications to proteins, lipids and DNA/RNA. In both human and canine brain, oxidative damage progressively increases with age. In the Alzheimer's disease (AD) brain, oxidative damage is further exacerbated, possibly due to increased deposition of beta-amyloid (Aβ) peptide in senile plaques. These observations have led to the hypothesis that antioxidants may be beneficial for brain aging and AD. Aged dogs naturally develop AD-like neuropathology (Aβ) and cognitive dysfunction and are a useful animal model in which to test antioxidants. In a longitudinal study of aging beagles, a diet rich in antioxidants improved cognition, maintained cognition and reduced oxidative damage and Aβ pathology in treated animals. These data suggest that antioxidants may be beneficial for human brain aging and for AD, particularly as a preventative intervention. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

16.
Traumatic brain injury causes progressive tissue atrophy and consequent neurological dysfunction, resulting from neuronal cell death in both animal models and patients. Fas (CD95) and Fas ligand (FasL/CD95L) are important mediators of apoptosis. However, little is known about the relationship between Fas and FasL and neuronal cell death in mice lacking the genes for inflammatory cytokines. In the present study, double tumor necrosis factor/lymphotoxin-alpha knockout (-/-) and interleukin-6-/- mice were subjected to closed head injury (CHI) and sacrificed at 24 hours or 7 days post-injury. Consecutive brain sections were evaluated for Fas and FasL expression, in situ DNA fragmentation (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling; TUNEL), morphologic characteristics of apoptotic cell death and leukocyte infiltration. A peak incidence of TUNEL positive cells was found in the injured cortex at 24 hours which remained slightly elevated at 7 days and coincided with maximum Fas expression. FasL was only moderately increased at 24 hours and showed maximum expression at 7 days. A few TUNEL positive cells were also found in the ipsilateral hippocampus at 24 hours. Apoptotic, TUNEL positive cells mostly co-localized with neurons and Fas and FasL immunoreactivity. The amount of accumulated polymorphonuclear leukocytes and CD11b positive cells was maximal in the injured hemispheres at 24 hours. We show strong evidence that Fas and FasL might be involved in neuronal apoptosis after CHI. Furthermore, Fas and FasL upregulation seems to be independent of neuroinflammation since no differences were found between cytokine-/- and wild-type mice.  相似文献   

17.
In an effort to identify astrocyte-derived molecules that may be intimately associated with progression of Alzheimer's disease (AD), Lib, a type I transmembrane protein belonging to leucine-rich repeat superfamily, has been identified as a distinctly inducible gene, responsive to beta-amyloid as well as pro-inflammatory cytokines in astrocytes. To evaluate the roles of Lib in AD, we investigated Lib expression in AD brain. In non-AD brain, Lib mRNA has been detected in neurons but not in quiescent astrocytes. On the contrary, in AD brain, Lib mRNA is expressed in activated astrocytes associated with senile plaques, but not expressed in neurons around lesions. Lib-expressing glioma cells displayed promotion of migration ability through reconstituted extracellular matrix and recombinant Lib protein bound to constituents of extracellular matrix. These observations suggest that Lib may contribute to regulation of cell-matrix adhesion interactions with respect to astrocyte recruitment around senile plaques in AD brain.  相似文献   

18.
Progressive accumulation of beta-amyloid (Aβ) will form the senile plaques and cause oxidative damage and neuronal cell death, which was accepted as the major pathological mechanism to the Alzheimer’s disease (AD). Hence, inhibition of Aβ-induced oxidative damage and neuronal cell apoptosis by agents with potential antioxidant properties represents one of the most effective strategies in combating human AD. Curcumin (Cur) a natural extraction from curcuma longa has potential of pharmacological efficacy, including the benefit to antagonize Aβ-induced neurotoxicity. However, the molecular mechanism remains elusive. The present study evaluated the protective effect of Cur against Aβ-induced cytotoxicity and apoptosis in PC12 cells and investigated the underlying mechanism. The results showed that Cur markedly reduced Aβ-induced cytotoxicity by inhibition of mitochondria-mediated apoptosis through regulation of Bcl-2 family. The PARP cleavage, caspases activation, and ROS-mediated DNA damage induced by Aβ were all significantly blocked by Cur. Moreover, regulation of p38 MAPK and AKT pathways both contributed to this protective potency. Our findings suggested that Cur could effectively suppress Aβ-induced cytotoxicity and apoptosis by inhibition of ROS-mediated oxidative damage and regulation of ERK pathway, which validated its therapeutic potential in chemoprevention and chemotherapy of Aβ-induced neurotoxicity.  相似文献   

19.
Two new iodinated fluoro- and hydroxy-pegylated aza-diphenylacetylene derivatives, 1 and 2, targeting beta-amyloid (Abeta) plaques have been successfully prepared. In vitro binding carried out in tissue homogenates prepared from postmortem AD brains with [(125)I]IMPY (6-iodo-2-(4'-dimethylamino)phenyl-imidazo[1,2-a]pyridine) as the radioligand indicated good binding affinities (K(i)=9.2 and 16.8 nM for 1 and 2, respectively). Brain penetrations of the corresponding radioiodinated ligands, evaluated in the normal mice, showed good initial brain penetrations (3.55% and 5.67% ID/g for [(125)I]1 and [(125)I]2 at 2 min post-injection). The washout from normal mice brain was relatively fast (0.33% and 0.91% ID/g at 2h post-injection). The specific binding of these radioiodinated ligands to beta-amyloid plaques was clearly demonstrated using film autoradiography of AD brain sections. Taken together, these preliminary results strongly suggest that these novel iodinated aza-diphenylacetylenes may be potentially useful for imaging Abeta plaques in the living human brain.  相似文献   

20.
The bcl-2 and caspase families are important regulators of programmed cell death in experimental models of ischemic, excitotoxic, and traumatic brain injury. The Bcl-2 family members Bcl-2 and Bcl-xL suppress programmed cell death, whereas Bax promotes programmed cell death. Activated caspase-1 (interleukin-1beta converting enzyme) and caspase-3 (Yama/Apopain/Cpp32) cleave proteins that are important in maintaining cytoskeletal integrity and DNA repair, and activate deoxyribonucleases, producing cell death with morphological features of apoptosis. To address the question of whether these Bcl-2 and caspase family members participate in the process of delayed neuronal death in humans, we examined brain tissue samples removed from adult patients during surgical decompression for intracranial hypertension in the acute phase after traumatic brain injury (n=8) and compared these samples to brain tissue obtained at autopsy from non-trauma patients (n=6). An increase in Bcl-2 but not Bcl-xL or Bax, cleavage of caspase-1, up-regulation and cleavage of caspase-3, and evidence for DNA fragmentation with both apoptotic and necrotic morphologies were found in tissue from traumatic brain injury patients compared with controls. These findings are the first to demonstrate that programmed cell death occurs in human brain after acute injury, and identify potential pharmacological and molecular targets for the treatment of human head injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号