首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Angiotensin II (Ang II) evokes a variety of hypertrophic responses such as activation of protein kinases, reprogramming of gene expressions and an increase in protein synthesis in cardiac myocytes. In this study, we examined the role of Rho family small GTP binding proteins (G proteins) in Ang II-induced cardiac hypertrophy. Ang II strongly activated extracellular signal-regulated protein kinases (ERKs) in cardiac myocytes of neonatal rats. Although Ang II-induced activation of ERKs was completely suppressed by an Ang II type 1 receptor antagonist, CV-11974, this activation was not inhibited by the pretreatment with C3 exoenzyme, which abrogates Rho functions. Overexpression of Rho GDP dissociation inhibitor (Rho-GDI), dominant negative mutants of Rac1 (D.N.Rac1), or D.N.Cdc42 had no effects on Ang II-induced activation of transfected ERK2. The promoter activity of skeletal a-actin and c-fos genes was increased by Ang II, and the increase was partly inhibited by overexpression of Rho-GDI and the pretreatment with C3 exoenzyme. Ang II increased phenylalanine incorporation into cardiac myocytes by approximately 1.4 fold as compared with control, and this increase was also significantly suppressed by the pretreatment with C3 exoenzyme. These results suggest that the Rho family small G proteins play important roles in Ang II-induced hypertrophic responses in cardiac myocytes.  相似文献   

3.
4.
5.
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger, cADP-ribose (cADPR), from NAD(+). In this study, we investigated the molecular basis of ADPR-cyclase activation in the ANG II signaling pathway and cellular responses in adult rat cardiomyocytes. The results showed that ANG II generated biphasic intracellular Ca(2+) concentration increases that include a rapid transient Ca(2+) elevation via inositol trisphosphate (IP(3)) receptor and sustained Ca(2+) rise via the activation of L-type Ca(2+) channel and opening of ryanodine receptor. ANG II-induced sustained Ca(2+) rise was blocked by a cADPR antagonistic analog, 8-bromo-cADPR, indicating that sustained Ca(2+) rise is mediated by cADPR. Supporting the notion, ADPR-cyclase activity and cADPR production by ANG II were increased in a time-dependent manner. Application of pharmacological inhibitors and immunological analyses revealed that cADPR formation was activated by sequential activation of Src, phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt), phospholipase C (PLC)-gamma1, and IP(3)-mediated Ca(2+) signal. Inhibitors of these signaling molecules not only completely abolished the ANG II-induced Ca(2+) signals but also inhibited cADPR formation. Application of the cADPR antagonist and inhibitors of upstream signaling molecules of ADPR-cyclase inhibited ANG II-stimulated hypertrophic responses, which include nuclear translocation of Ca(2+)/calcineurin-dependent nuclear factor of activated T cells 3, protein expression of transforming growth factor-beta1, and incorporation of [(3)H]leucine in cardiomyocytes. Taken together, these findings suggest that activation of ADPR-cyclase by ANG II entails a novel signaling pathway involving sequential activation of Src, PI 3-kinase/Akt, and PLC-gamma1/IP(3) and that the activation of ADPR-cyclase can lead to cardiac hypertrophy.  相似文献   

6.
The mammalian homologues of the Drosophila transient receptor potential (TRP) represent a superfamily of ion channels involved in Ca(2+) homeostasis. Several members of this family are activated either by a depletion of the internal stores of Ca(2+) or by stimulation of G protein-coupled receptors. In androgen responsive prostate cancer cell line LNCaP, TRPC1, TRPC4 and/or TRPV6 have been reported to function as store-operated channels (SOCs) while TRPC3 might be involved in the response to agonist stimulation, possibly through the induction of diacylglycerol production by phospholipase C. However, the control of expression of these TRP proteins is largely unknown. In the present study, we have investigated if the expression of the TRP proteins possibly involved in the capacitative influx of calcium is influenced by the contents of Ca(2+) in the endoplasmic reticulum. Using real-time PCR and Western blot techniques, we show that the expression of TRPC1, TRPC3 and TRPV6 proteins increases after a prolonged (24-48 h) depletion of the stores with thapsigargin. The upregulation of TRPC1 and TRPC3 depends on the store contents level and involves the activation of the Ca(2+)/calmodulin/calcineurin/NFAT pathway. Functionally, cells overexpressing TRPC1, TRPC3 and TRPV6 channels after a prolonged depletion of the stores showed an increased [Ca(2+)](i) response to alpha-adrenergic stimulation. However, the store-operated entry of calcium was unchanged. The isolated overexpression of TRPV6 (without overexpression of TRPC1 and TRPC3) did not produce this increased response to agonists, therefore suggesting that TRPC1 and/or TRPC3 proteins are responsible for the response to alpha-adrenergic stimulation but that TRPC1, TPRC3 and TRPV6 proteins, expressed alone or concomitantly, are not sufficient for SOC formation.  相似文献   

7.
Heart failure can be caused by pro-hypertrophic humoral factors such as angiotensin II (Ang II), which regulates protein kinase activities. The intermingled responses of these kinases lead to the early compensated cardiac hypertrophy, but later to the uncompensated phase of heart failure. We have shown that although beneficial, cardiac hypertrophy is associated with modifications in ion channels that are mainly mediated through mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI3K) activation. This study evaluates the control of L-type Ca(2+) current (I(Ca,L)) by the Ang II/PI3K pathway in hypertrophied ventricular myocytes from volume-overload rats using the perforated patch-clamp technique. To assess activation of the I(Ca,L) in cardiomyocytes, voltages of 350 ms in 10 mV increments from a holding potential of -85 mV were applied to cardiocytes, with a pre-pulse to -45 mV for 300 ms. Volume overload-induced hypertrophy reduces I(Ca,L), whereas addition of Ang II alleviates the hypertrophic-induced decrease in a PI3K-dependent manner. Acute administration of Ang II (10(-6) mol/L) to normal adult cardiomyocytes had no effect; however, captopril reduced their basal I(Ca,L). In parallel, captopril regressed the hypertrophy and inverted the Ang II effect on I(Ca,L) seemingly through a PI3K upstream effector. Thus, it seems that regression of cardiac hypertrophy by captopril improved I(Ca,L) partly through PI3K.  相似文献   

8.
Although the activation of the A(1)-subtype of the adenosine receptors (A(1)AR) is arrhythmogenic in the developing heart, little is known about the underlying downstream mechanisms. The aim of this study was to determine to what extent the transient receptor potential canonical (TRPC) channel 3, functioning as receptor-operated channel (ROC), contributes to the A(1)AR-induced conduction disturbances. Using embryonic atrial and ventricular myocytes obtained from 4-day-old chick embryos, we found that the specific activation of A(1)AR by CCPA induced sarcolemmal Ca(2+) entry. However, A(1)AR stimulation did not induce Ca(2+) release from the sarcoplasmic reticulum. Specific blockade of TRPC3 activity by Pyr3, by a dominant negative of TRPC3 construct, or inhibition of phospholipase Cs and PKCs strongly inhibited the A(1)AR-enhanced Ca(2+) entry. Ca(2+) entry through TRPC3 was activated by the 1,2-diacylglycerol (DAG) analog OAG via PKC-independent and -dependent mechanisms in atrial and ventricular myocytes, respectively. In parallel, inhibition of the atypical PKCζ by myristoylated PKCζ pseudosubstrate inhibitor significantly decreased the A(1)AR-enhanced Ca(2+) entry in both types of myocytes. Additionally, electrocardiography showed that inhibition of TRPC3 channel suppressed transient A(1)AR-induced conduction disturbances in the embryonic heart. Our data showing that A(1)AR activation subtly mediates a proarrhythmic Ca(2+) entry through TRPC3-encoded ROC by stimulating the phospholipase C/DAG/PKC cascade provide evidence for a novel pathway whereby Ca(2+) entry and cardiac function are altered. Thus, the A(1)AR-TRPC3 axis may represent a potential therapeutic target.  相似文献   

9.
Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca(2+) rise in response to stimulation of mouse TRPC4β by μ-opioid receptors. ML204 inhibited TRPC4β-mediated intracellular Ca(2+) rise with an IC(50) value of 0.96 μm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4β currents activated through either μ-opioid receptor stimulation or intracellular dialysis of guanosine 5'-3-O-(thio)triphosphate (GTPγS), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10-20 μm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTPγS, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.  相似文献   

10.
11.
Zhong X  Liu J  Lu F  Wang Y  Zhao Y  Dong S  Leng X  Jia J  Ren H  Xu C  Zhang W 《Cell biology international》2012,36(10):937-943
Nuclear Ca2+ plays a pivotal role in the regulation of gene expression. IP3 (inositol-1,4,5-trisphosphate) is an important regulator of nuclear Ca2+. We hypothesized that the CaR (calcium sensing receptor) stimulates nuclear Ca2+ release through IICR (IP3-induced calcium release) from perinuclear stores. Spontaneous Ca2+ oscillations and the spark frequency of nuclear Ca2+ were measured simultaneously in NRVMs (neonatal rat ventricular myocytes) using confocal imaging. CaR-induced nuclear Ca2+ release through IICR was abolished by inhibition of CaR and IP3Rs (IP3 receptors). However, no effect on the inhibition of RyRs (ryanodine receptors) was detected. The results suggest that CaR specifically modulates nuclear Ca2+ signalling through the IP3R pathway. Interestingly, nuclear Ca2+ was released from perinuclear stores by CaR activator-induced cardiomyocyte hypertrophy through the Ca2+-dependent phosphatase CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) pathway. We have also demonstrated that the activation of the CaR increased the NRVM protein content, enlarged cell size and stimulated CaN expression and NFAT nuclear translocation in NRVMs. Thus, CaR enhances the nuclear Ca2+ transient in NRVMs by increasing fractional Ca2+ release from perinuclear stores, which is involved in cardiac hypertrophy through the CaN/NFAT pathway.  相似文献   

12.
Activation of TRPC3 channels is concurrent with inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)-mediated intracellular Ca(2+) release and associated with phosphatidylinositol 4,5-bisphosphate hydrolysis and recruitment to the plasma membrane. Here we report that interaction of TRPC3 with receptor for activated C-kinase-1 (RACK1) not only determines plasma membrane localization of the channel but also the interaction of IP(3)R with RACK1 and IP(3)-dependent intracellular Ca(2+) release. We show that TRPC3 interacts with RACK1 via N-terminal residues Glu-232, Asp-233, Glu-240, and Glu-244. Carbachol (CCh) stimulation of HEK293 cells expressing wild type TRPC3 induced recruitment of a ternary TRPC3-RACK1-IP(3)R complex and increased surface expression of TRPC3 and Ca(2+) entry. Mutation of the putative RACK1 binding sequence in TRPC3 disrupted plasma membrane localization of the channel. CCh-stimulated recruitment of TRPC3-RACK1-IP(3)R complex as well as increased surface expression of TRPC3 and receptor-operated Ca(2+) entry were also attenuated. Importantly, CCh-induced intracellular Ca(2+) release was significantly reduced as was RACK1-IP(3)R association without any change in thapsigargin-stimulated Ca(2+) release and entry. Knockdown of endogenous TRPC3 also decreased RACK1-IP(3)R association and decreased CCh-stimulated Ca(2+) entry. Furthermore, an oscillatory pattern of CCh-stimulated intracellular Ca(2+) release was seen in these cells compared with the more sustained pattern seen in control cells. Similar oscillatory pattern of Ca(2+) release was seen after CCh stimulation of cells expressing the TRPC3 mutant. Together these data demonstrate a novel role for TRPC3 in regulation of IP(3)R function. We suggest TRPC3 controls agonist-stimulated intracellular Ca(2+) release by mediating interaction between IP(3)R and RACK1.  相似文献   

13.
14.
Ca(2+)-permeable cation channels consisting of canonical transient receptor potential 1 (TRPC1) proteins mediate Ca(2+) influx pathways in vascular smooth muscle cells (VSMCs), which regulate physiological and pathological functions. We investigated properties conferred by TRPC1 proteins to native single TRPC channels in acutely isolated mesenteric artery VSMCs from wild-type (WT) and TRPC1-deficient (TRPC1(-/-)) mice using patch-clamp techniques. In WT VSMCs, the intracellular Ca(2+) store-depleting agents cyclopiazonic acid (CPA) and 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM) both evoked channel currents, which had unitary conductances of ~2 pS. In TRPC1(-/-) VSMCs, CPA-induced channel currents had 3 subconductance states of 14, 32, and 53 pS. Passive depletion of intracellular Ca(2+) stores activated whole-cell cation currents in WT but not TRPC1(-/-) VSMCs. Differential blocking actions of anti-TRPC antibodies and coimmunoprecipitation studies revealed that CPA induced heteromeric TRPC1/C5 channels in WT VSMCs and TRPC5 channels in TRPC1(-/-) VSMCs. CPA-evoked TRPC1/C5 channel activity was prevented by the protein kinase C (PKC) inhibitor chelerythrine. In addition, the PKC activator phorbol 12,13-dibutyrate (PDBu), a PKC catalytic subunit, and phosphatidylinositol-4,5-bisphosphate (PIP(2)) and phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) activated TRPC1/C5 channel activity, which was prevented by chelerythrine. In contrast, CPA-evoked TRPC5 channel activity was potentiated by chelerythrine, and inhibited by PDBu, PIP(2), and PIP(3). TRPC5 channels in TRPC1(-/-) VSMCs were activated by increasing intracellular Ca(2+) concentrations ([Ca(2+)](i)), whereas increasing [Ca(2+)](i) had no effect in WT VSMCs. We conclude that agents that deplete intracellular Ca(2+) stores activate native heteromeric TRPC1/C5 channels in VSMCs, and that TRPC1 subunits are important in determining unitary conductance and conferring channel activation by PKC, PIP(2), and PIP(3).  相似文献   

15.
CaV1.2 and transient receptor potential canonical channel 3 (TRPC3) are two proteins known to have important roles in pathological cardiac hypertrophy; however, such roles still remain unclear. A better understanding of these roles is important for furthering the clinical understanding of heart failure. We previously reported that Trpc3-knockout (KO) mice are resistant to pathologic hypertrophy and that their CaV1.2 protein expression is reduced. In this study, we aimed to examine the relationship between these two proteins and characterize their role in neonatal cardiomyocytes. We measured CaV1.2 expression in the hearts of wild-type (WT) and Trpc3−/− mice, and examined the effects of Trpc3 knockdown and overexpression in the rat cell line H9c2. We also compared the hypertrophic responses of neonatal cardiomyocytes cultured from Trpc3−/− mice to a representative hypertrophy-causing drug, isoproterenol (ISO), and measured the activity of nuclear factor of activated T cells 3 (NFAT3) in neonatal cardiomyocytes (NCMCs). We inhibited the L-type current with nifedipine, and measured the intracellular calcium concentration using Fura-2 with 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced Ba2+ influx. When using the Trpc3-mediated Ca2+ influx, both intracellular calcium concentration and calcium influx were reduced in Trpc3-KO myocytes. Not only was the expression of CaV1.2 greatly reduced in Trpc3-KO cardiac lysate, but the size of the CaV1.2 currents in NCMCs was also greatly reduced. When NCMCs were treated with Trpc3 siRNA, it was confirmed that the expression of CaV1.2 and the intracellular nuclear transfer activity of NFAT decreased. In H9c2 cells, the ISO activated- and verapamil inhibited- Ca2+ influxes were dramatically attenuated by Trpc3 siRNA treatment. In addition, it was confirmed that both the expression of CaV1.2 and the size of H9c2 cells were regulated according to the expression and activation level of TRPC3. We found that after stimulation with ISO, cell hypertrophy occurred in WT myocytes, while the increase in size of Trpc3-KO myocytes was greatly reduced. These results suggest that not only the cell hypertrophy process in neonatal cardiac myocytes and H9c2 cells were regulated according to the expression level of CaV1.2, but also that the expression level of CaV1.2 was regulated by TRPC3 through the activation of NFAT.  相似文献   

16.
蛋白激酶Cδ可能参与肥大心肌细胞转向凋亡   总被引:1,自引:0,他引:1  
Guo WG  Yu ZB  Xie MJ 《生理学报》2006,58(3):269-274
为了探讨肥大心肌细胞对凋亡刺激的易感性及蛋白激酶Cδ(protein kinase Cδ,PKCδ)在其中的作用,以内皮素-1 (endothelin-1,ET-1)处理原代培养的新生大鼠心肌细胞,诱导心肌细胞肥大;再用血管紧张素Ⅱ(angiotensin II,Ang II)作为细胞凋亡诱导因子,采用鬼笔环肽(phalloidin)荧光染色与细胞面积测量两种方法检测心肌肥大,Hoechst 33258荧光染色检测细胞凋亡。结果显示:(1)1与10 nmol/L ET-1作用48h,心肌细胞肌原纤维排列整齐、染色增浓,随ET-1浓度增加而愈加明显,心肌细胞表面积分别增加42.5%和67.3%,以此作为轻度和中度心肌细胞肥大模型。(2)正常、轻度肥大与中度肥大心肌细胞受1nmol/L AngⅡ处理24h后,凋亡率分别为(15.54±1.32)%、(20.65±1.40)%与(29.33±3.52)%,三组之间有显著差异(P<0.05)。(3)受AngⅡ刺激后,PKCδ特异性抑制剂rottlerin不影响正常心肌细胞的凋亡率,却有效抑制了轻度和中度肥大心肌细胞的凋亡。肥大心肌细胞凋亡易感性明显高于正常心肌细胞,抑制PKCδ可以抑制肥大心肌细胞凋亡,提示PKCδ参与肥大心肌细胞凋亡过程。  相似文献   

17.
18.
19.
Phenotypic modulation of vascular myocytes is important for vascular development and adaptation. A characteristic feature of this process is alteration in intracellular Ca(2+) handling, which is not completely understood. We studied mechanisms involved in functional changes of inositol 1,4,5-trisphosphate (IP(3))- and ryanodine (Ry)-sensitive Ca(2+) stores, store-operated Ca(2+) entry (SOCE), and receptor-operated Ca(2+) entry (ROCE) associated with arterial myocyte modulation from a contractile to a proliferative phenotype in culture. Proliferating, cultured myocytes from rat mesenteric artery have elevated resting cytosolic Ca(2+) levels and increased IP(3)-sensitive Ca(2+) store content. ATP- and cyclopiazonic acid [CPA; a sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor]-induced Ca(2+) transients in Ca(2+)-free medium are significantly larger in proliferating arterial smooth muscle cells (ASMCs) than in freshly dissociated myocytes, whereas caffeine (Caf)-induced Ca(2+) release is much smaller. Moreover, the Caf/Ry-sensitive store gradually loses sensitivity to Caf activation during cell culture. These changes can be explained by increased expression of all three IP(3) receptors and a switch from Ry receptor type II to type III expression during proliferation. SOCE, activated by depletion of the IP(3)/CPA-sensitive store, is greatly increased in proliferating ASMCs. Augmented SOCE and ROCE (activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol) in proliferating myocytes can be attributed to upregulated expression of, respectively, transient receptor potential proteins TRPC1/4/5 and TRPC3/6. Moreover, stromal interacting molecule 1 (STIM1) and Orai proteins are upregulated in proliferating cells. Increased expression of IP(3) receptors, SERCA2b, TRPCs, Orai(s), and STIM1 in proliferating ASMCs suggests that these proteins play a critical role in an altered Ca(2+) handling that occurs during vascular growth and remodeling.  相似文献   

20.
Endothelin-1 (ET-1) induces cardiac hypertrophy. Because Ca(2+) is a major second messenger of ET-1, the role of Ca(2+) in ET-1-induced hypertrophic responses in cultured cardiac myocytes of neonatal rats was examined. ET-1 activated the promoter of the beta-type myosin heavy chain gene (beta-MHC) (-354 to +34 base pairs) by about 4-fold. This activation was inhibited by chelation of Ca(2+) and the blocking of protein kinase C activity. Similarly, the beta-MHC promoter was activated by Ca(2+) ionophores and a protein kinase C activator. beta-MHC promoter activation induced by ET-1 was suppressed by pretreatment with the calmodulin inhibitor, W7, the Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitor, KN62, and the calcineurin inhibitor, cyclosporin A. beta-MHC promoter activation by ET-1 was also attenuated by overexpression of dominant-negative mutants of CaMKII and calcineurin. ET-1 increased the activity of CaMKII and calcineurin in cardiac myocytes. Pretreatment with KN62 and cyclosporin A strongly suppressed ET-1-induced increases in [(3)H]phenylalanine uptake and in cell size. These results suggest that Ca(2+) plays a critical role in ET-1-induced cardiomyocyte hypertrophy by activating CaMKII- and calcineurin-dependent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号