首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A splicing repressor domain in polypyrimidine tract-binding protein   总被引:2,自引:0,他引:2  
Polypyrimidine tract-binding protein (PTB) is an hnRNP with four RRM type domains. It plays roles as a repressive alternative splicing regulator of multilple target genes, as well as being involved in pre-mRNA 3' end processing, mRNA localization, stability, and internal ribosome entry site-mediated translation. Here we have used a tethered function assay, in which a fusion protein of PTB and the bacteriophage MS2 coat protein is recruited to a splicing regulatory site by binding to an artificially inserted MS2 binding site. Deletion mutations of PTB in this system allowed us to identify RRM2 and the following inter-RRM linker region as the minimal region of PTB that can act as splicing repressor domain when recruited to RNA. Splicing repression by the minimal repressor domain remained cell type-specific and dependent upon other defined regulatory elements in the alpha-tropomyosin test minigene. Our results highlight the fact that splicing repression by PTB can be uncoupled from the mode by which it binds to RNA.  相似文献   

2.
3.
Human polypyrimidine tract-binding protein PTB is a multifunctional RNA-binding protein with four RNA recognition motifs (RRM1 to RRM4). PTB is a nucleocytoplasmic shuttle protein that functions as a key regulator of alternative pre-mRNA splicing in the nucleoplasm and promotes internal ribosome entry site-mediated translation initiation of viral and cellular mRNAs in the cytoplasm. Here, we demonstrate that PTB and its paralogs, nPTB and ROD1, specifically interact with mitochondrial (mt) tRNAThr both in human and mouse cells. In vivo and in vitro RNA-binding experiments demonstrate that PTB forms a direct interaction with the T-loop and the D-stem-loop of mt tRNAThr using its N-terminal RRM1 and RRM2 motifs. RNA sequencing and cell fractionation experiments show that PTB associates with correctly processed and internally modified, mature mt tRNAThr in the cytoplasm outside of mitochondria. Consistent with this, PTB activity is not required for mt tRNAThr biogenesis or for correct mitochondrial protein synthesis. PTB association with mt tRNAThr is largely increased upon induction of apoptosis, arguing for a potential role of the mt tRNAThr/PTB complex in apoptosis. Our results lend strong support to the recently emerging conception that human mt tRNAs can participate in novel cytoplasmic processes independent from mitochondrial protein synthesis.  相似文献   

4.
The polypyrimidine tract-binding protein (PTB) is a nuclear protein that regulates alternative splicing. In addition, it plays a role in the cytoplasm during infection by some viruses and functions as a positive effector of hepatitis B virus RNA export. Thus, it presumably contains a nuclear export signal (NES). Using a heterokaryon export assay in transfected cultured cells, we have shown that the N-terminal 25 amino acid residues of PTB function as an autonomous NES, with residues 11-16 being important for its activity. Unlike the heteronuclear ribonucleoprotein A1 NES, this NES is separable from the nuclear localization signal, which spans the entire N-terminal 60 residues of PTB. The PTB NES cannot be shown to bind to CAS or Crm1, cellular receptors known to export proteins from the nucleus, and it functions in the presence of leptomycin B, a specific inhibitor of Crm1-dependent export. PTB deleted of its NES, unlike wild type PTB, does not stimulate the export of hepatitis B virus RNA. Therefore, the PTB NES is a functionally important domain of this multifunctional protein that utilizes an unknown export receptor.  相似文献   

5.
The cellular polypyrimidine tract-binding protein (PTB) is recruited by the genomic RNAs of picornaviruses to stimulate translation initiation at their internal ribosome entry site (IRES) elements. We investigated the contribution of the individual RNA recognition motif (RRM) domains of PTB to its interaction with the IRES of foot-and-mouth disease virus (FMDV). Using a native gel system, we found that PTB is a monomer, confirming recent reports that challenged the previous view that PTB is a dimer. Mapping the spatial orientation of PTB relative to the bound IRES RNA, we found that the two C-terminal RRM domains III and IV of PTB bind in an oriented way to the IRES. Domain III contacts the IRES stem-loop 2, while domain IV contacts the separate IRES 3' region. PTB domain I appears not to be involved directly in RNA binding, but domain II stabilizes the RNA binding conferred by domains III and IV. A PTB protein containing only these two C-terminal PTB domains is sufficient to enhance the entry of initiation factor eIF4G to the IRES and stimulate IRES activity, and the long-lived PTB-IRES interaction stabilized by domain II is not a prerequisite for this function. Thus, PTB most likely acts as an RNA chaperone to stabilize IRES structure and, in that way, augment IRES activity.  相似文献   

6.
Polypyrimidine tract-binding protein 1 (PTBP1) and its brainspecific homologue, PTBP2, are associated with pre-mRNAs and influence pre-mRNA processing, as well as mRNA metabolism and transport. They play important roles in neural differentiation and glioma development. In our study, we detected the expression of the two proteins in glioma cells and predicted that they may be sumoylated using SUMOplot analyses. We confirmed that PTBP1 and PTBP2 can be modified by SUMO1 with co-immunoprecipitation experiments using 293ET cells transiently co-expressing SUMO1 and either PTBP1 or PTBP2. We also found that SUMO1 modification of PTBP2 was enhanced by Ubc9 (E2). The mutation of the sumoylation site (Lys137) of PTBP2 markedly inhibited its modification by SUMO1. Interestingly, in T98G glioma cells, the level of sumoylated PTBP2 was reduced compared to that of normal brain cells. Overall, this study shows that PTBP2 is posttranslationally modified by SUMO1. [BMB Reports 2014; 47(4): 233-238]  相似文献   

7.
Raver2 was originally identified as a member of the hnRNP family through database searches revealing three N-terminal RNA recognition motifs (RRMs) bearing highest sequence identity in the RNP sequences to the related hnRNP Raver1. Outside the RRM region, both Raver proteins are quite divergent in sequence except for conserved peptide motifs of the [S/G][I/L]LGxxP consensus sequence. The latter have been implicated in Raver1 binding to the polypyrimidine tract-binding protein (PTB) a regulatory splicing repressor and common ligand of both Raver proteins. In the present study we investigated the association of Raver2 with RNA and PTB in more detail. The isolated RRM domain of Raver2 weakly interacted with ribonucleotides, but the full-length protein failed to directly bind to RNA in vitro. However, trimeric complexes with RNA were formed via binding to PTB. Raver2 harbors two putative PTB binding sequences in the C-terminal half of the protein, whose influence on Raver2-PTB complex formation was analyzed in a mutational approach, replacing critical leucine residues with alanines. While mutation of either sequence motif alone negatively affected Raver2 binding to PTB in vitro, only mutation of the more C-terminally located SLLGEPP motif significantly reduced the recruitment of Raver2 into perinucleolar compartments (PNCs) in HeLa cells. The latter observation was also confirmed for Raver1: out of four sequence motifs matching the PTB binding consensus, mutations in the SLLGEPP motif were the only ones attenuating the recruitment of Raver1 into PNCs. The conserved mode of PTB binding suggests that Raver2, like Raver1, may function as a modulator of PTB activity.  相似文献   

8.
9.
When oxygen supply is restricted, protein synthesis is rapidly abrogated owing to inhibition of global translation. However, HIF-1α protein expression can persist during hypoxia, owing to an internal ribosome entry site (IRES) in the 5′-untranslated region of its mRNA. Here, we report on the molecular mechanism of HIF-1α IRES-mediated translation during oxygen deprivation. Using RNA affinity chromatography and UV-crosslinking experiments, we show that the polypyrimidine tract binding protein (PTB) can specifically interact with the HIF-1α IRES, and that this interaction is enhanced in hypoxic conditions. Overexpression of PTB enhanced HIF-1α IRES activity, whereas RNA interference-mediated downregula-tion of PTB protein expression inhibited HIF-1α IRES activity. Furthermore, hypoxia-induced stimulation of the HIF-1α IRES was reduced in cells in which PTB function was downregulated. In agreement with these results, the IRES activity of HIF-1α IRES deletion mutants that are deficient in PTB-binding could not be stimulated by oxygen deprivation. All together, our data suggest that PTB plays a stimulatory role in the IRES-mediated translation of HIF-1α when oxygen supply is limited.  相似文献   

10.
Splicing of the c-src N1 exon is repressed by the polypyrimidine tract-binding protein (PTB or PTBP1). During exon repression, the U1 snRNP binds properly to the N1 exon 5' splice site but is made inactive by the presence of PTB. Examining the patterns of nuclease protection at this 5' splice site, we find that the interaction of U1 is altered by the adjacent PTB. Interestingly, UV crosslinking identifies a direct contact between the pre-mRNA-bound PTB and the U1 snRNA. EMSA, ITC, and NMR studies show that PTB RRMs 1 and 2 bind the pyrimidine-rich internal loop of U1 snRNA stem loop 4. The PTB/U1 interaction prevents further assembly of the U1 snRNP with spliceosomal components downstream. This precise interaction between a splicing regulator and?an snRNA component of the spliceosome points to a range of different mechanisms for splicing regulation.  相似文献   

11.
12.
13.
Taurine transporter is expressed in vascular smooth muscle cells   总被引:2,自引:0,他引:2  
Liao XB  Zhou XM  Li JM  Tan ZP  Liu LM  Zhang W  Tan H  Lu Y  Yuan LQ 《Amino acids》2007,33(4):639-643
Summary. The regulation of vascular smooth muscle cells (VSMCs) function by taurine has been a subject of increasing interest and investigation, and taurine is taken up into cells through a specific transporter system, the taurine transporter (TAUT). In the present study, we examined the expression of TAUT in VSMCs and the kinetic parameters of the uptake process of TAUT in VSMCs. RT-PCR and western blot demonstrated that the mRNA and protein of TAUT was expressed in VSMCs in vitro. Immunohistochemistry using antibody for TAUT revealed the expression of this protein in rat thoracic aorta. The maximal [3H]taurine uptake rate in VSMCs was 37.75 ± 3.13 pmol/min per mg of protein, with a K m value of 5.42 ± 0.81 μM. Thus, VSMCs are able to express a functional taurine transporter. The regulation and detailed function of taurine and TAUT in VSMCs remain unclear, but our findings suggest a functional role for them in VSMCs metabolism.  相似文献   

14.
15.
A modified suppression subtractive hybridization assay was performed to uncover genes induced by all-trans retinoic acid in cultured smooth muscle cells (SMC). Northern blotting studies confirmed the induction of 14 genes, many of which have heretofore been unrecognized as retinoid-inducible. Temporal expression and cycloheximide studies allowed us to categorize these genes as either immediate-early (LOX-1, endolyn, Stoned B/TFIIA alpha/beta-like factor, Src Suppressed C Kinase Substrate, and tissue transglutaminase) or delayed (cathepsin-L, ceruloplasmin, epithelin, importin alpha, alpha(8)-integrin, lactate dehydrogenase B, retinol dehydrogenase, spermidine/spermine N(1)-acetyltransferase, and VCAM-1) retinoid-response genes. A survey of rat tissues showed two of the genes (tissue transglutaminase and alpha(8)-integrin) to be highly restricted to vascular tissue. In situ hybridization verified expression of both tissue transglutaminase and alpha(8)-integrin to SMC in balloon-injured rat carotid artery. These findings unveil a new retinoid-response gene set that should be exploited to define molecular pathways involved in the antagonistic effects of retinoids on SMC growth and neointimal formation.  相似文献   

16.
LPP,a LIM protein highly expressed in smooth muscle   总被引:1,自引:0,他引:1  
An 80-kDa protein, prominently expressed in smooth muscle, was microsequenced and identified as LPP, the product of the lipoma-preferred partner gene (Petit MMR, Mols R, Schoenmakers EFPM, Mandahl N, and Van de Ven WJM. Genomics 36: 118–129, 1996). Using a specific anti-LPP antibody, we showed, in Western blots and with immunofluorescence microscopy, the selective expression of LPP in vascular and visceral smooth muscles (0.5–1 ng/µg total protein). In other mature (noncultured) tissues, including heart and skeletal muscle, the protein is present only in trace amounts and is closely correlated with the levels of the smooth muscle marker -actin. In freshly isolated guinea pig bladder smooth muscle cells, immunofluorescence images showed LPP as linear arrays of punctate, longitudinally oriented staining superimposed with vinculin staining on the plasma membrane surface. A corresponding pattern of periodic labeling at the membrane in transverse sections of bladder smooth muscle suggested an association of LPP with peripheral dense bodies. In cultured rat aortic smooth muscle cells, LPP colocalized with vinculin at focal adhesions but not with p120 catenin or -actinin. Overexpression of the protein increased EGF-stimulated migration of vascular smooth muscle cells in Transwell assays, suggesting the participation of LPP in cell motility. The Rho-kinase inhibitor Y-27632 dissociated focal adhesions and LPP staining at the cell periphery and enhanced the nuclear accumulation of LPP induced by leptomycin B, indicating that LPP has a potential for relocating to the nucleus through a shuttling mechanism that is sensitive to inhibition of Rho-kinase. LIM protein; dense plaque; Rho-kinase; nuclear transport; cell migration  相似文献   

17.
18.
19.
20.
Surfactant protein D (SP-D) is a constituent of the innate immune system that plays a role in the host defense against lung pathogens and in modulating inflammatory responses. While SP-D has been detected in extrapulmonary tissues, little is known about its expression and function in the vasculature. Immunostaining of human coronary artery tissue sections demonstrated immunoreactive SP-D protein in smooth muscle cells (SMCs) and endothelial cells. SP-D was also detected in isolated human coronary artery SMCs (HCASMCs) by PCR and immunoblot analysis. Treatment of HCASMCs with endotoxin (LPS) stimulated the release of IL-8, a proinflammatory cytokine. This release was inhibited >70% by recombinant SP-D. Overexpression of SP-D by adenoviral-mediated gene transfer in HCASMCs inhibited both LPS- and TNF-alpha-induced IL-8 release. Overexpression of SP-D also enhanced uptake of Chlamydia pneumoniae elementary bodies into HCASMCs while attenuating IL-8 production induced by bacterial exposure. Both LPS and TNF-alpha increased SP-D mRNA levels by five- to eightfold in HCASMCs, suggesting that inflammatory mediators upregulate the expression of SP-D. In conclusion, SP-D is expressed in human coronary arteries and functions as an anti-inflammatory protein in HCASMCs. SP-D may also participate in the host defense against pathogens that invade the vascular wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号